Loading (50 kb)...'
(continued)
2.1.4.6 Relative Accuracy. The result of the PA test of the CO CEMS (which incorporates the O 2 monitor) must be no greater than 10 percent of the mean value of the PTM results or must be within 10 ppm CO of the PTM results, whichever is less restrictive. The ppm CO concentration shall be corrected to 7 percent O 2 before calculating the RA.
2.1.4.7 Calibration Error. The mean difference between the CEMS and reference values at all three test points (see Table 2.1-3) must be no greater than 5 percent of span value for CO monitors (i.e., 10 ppm CO for low-range Tier I CO analyzers and 150 ppm CO for high-range CO analyzers) and 0.5 percent for O 2 analyzers.
2.1.4.8 Measurement and Recording Frequency. The sample to be analyzed shall pass through the measurement section of the analyzer without interruption. The detector shall measure the sample concentration at least once every 15 seconds. An average emission rate shall be computed and recorded at least once every 60 seconds.
2.1.4.9 Hourly Rolling Average Calculation. The CEMS shall calculate every minute an hourly rolling average, which is the arithmetic mean of the 60 most recent 1-minute average values.
2.1.4.10 Retest. If the CEMS produces results within the specified criteria, the test is successful. If the CEMS does not meet one or more of the criteria, the necessary corrections must be made and the performance tests repeated.
2.1.5 Test Periods
2.1.5.1 Pretest Preparation Period. Install the CEMS, prepare the PTM test site according to the specifications in section 2.1.3, and prepare the CEMS for operation and calibration according to the manufacturer's written instructions. A pretest conditioning period similar to that of the 7-day CD test is recommended to verify the operational status of the CEMS.
2.1.5.2 Calibration Drift Test Period. While the facility is operating under normal conditions, determine the CD at 24-hour intervals for seven consecutive days according to the procedure given in section 2.1.6.1. All CD determinations must be made following a 24-hour period during which no unscheduled maintenance, repair, or adjustment takes place. If the combustion unit is taken out of service during the test period, record the onset and the duration of the downtime and continue the calibration drift test when the unit resumes operation.
2.1.5.3 Relative Accuracy Test Period. Conduct the RA test according to the procedure in section 2.1.6.4 while the facility is operating under normal conditions. RA testing for CO and O 2 shall be conducted simultaneously so that the results can be calculated for CO corrected to 7 percent O 2. The RA test shall be conducted during the CD test period. It is emphasized that during the CD test period, no adjustments or repairs may be made to the CEMS other than routine calibration adjustments performed immediately following the daily CD determination.
2.1.5.4 Calibration Error Test and Response Time Test Periods. Conduct the CE and response time tests during the CD test period.
2.1.6 Performance Specification Test Procedures
2.1.6.1 Calibration Drift Test.
2.1.6.1.1 Sampling Strategy. Conduct the CD test for all monitors at 24-hour intervals for seven consecutive days using calibration gases at the two (or three, if applicable) concentration levels specified in section 2.1.4.2. Introduce the calibration gases into the sampling system as close to the sampling probe outlet as practical. The gas shall pass through all filters, scrubbers, conditioners, and other CEMS components used during normal sampling. If periodic automatic or manual adjustments are made to the CEMS zero and calibration settings, conduct the CD test immediately before these adjustments, or conduct it in such a way that the CD can be determined. Record the CEMS response and subtract this value from the reference (calibration gas) value. To meet the specification, none of the differences shall exceed the limits specified in Table 2.1-1.
2.1.6.1.2 Calculations. Summarize the results on a data sheet. An example is shown in Figure 2.1-1. Calculate the differences between the CEMS responses and the reference values.
2.1.6.2 Response Time. Check the entire CEMS including sample extraction and transport, sample conditioning, gas analyses, and the data recording.
2.1.6.2.1 Introduce zero gas into the system. For extractive systems, introduce the calibration gases at the probe as near to the sample location as possible. For in-situ system, introduce the zero gas at a point such that all components active in the analysis are tested. When the system output has stabilized (no change greater than 1 percent of full scale for 30 seconds), switch to monitor stack effluent and wait for a stable value. Record the time (upscale response time) required to reach 95 percent of the final stable value.
2.1.6.2.2 Next, introduce a high-level calibration gas and repeat the above procedure. Repeat the entire procedure three times and determine the mean upscale and downscale response times. The longer of the two means is the system response time.
2.1.6.3 Calibration Error Test Procedure.
2.1.6.3.1 Sampling Strategy. Challenge each monitor (both low- and high-range CO and O 2) with zero gas and US EPA Protocol 1 cylinder gases at three measurement points within the ranges specified in Table 2.1-3.
Table 2.1-3 -Calibration Error Concentration Ranges for Tier I
______________________________________________________________________
GAS Concentration Ranges
CO, ppm
Measurement point Low range [FN1] High range O 2 percent
______________________________________________________________________
1 0-40 0-600 0-2
2 60-80 900-1200 8-10
3 140-160 2100-2400 14-16
______________________________________________________________________
[FNFOOTNOTE:] 1 For Tier II, the CE specifications for the low-range CO CEMS are 0-20%, 30-40%, and 70-80% of twice the permit limit.
*Acceptance Criteria: 35% of span each day for seven days
Figure 2.1-1 Calibration Drift determination
2.1.6.3.1.1 If a single measurement range is used, the calibration gases used in the daily CD checks (if they are Protocol 1 cylinder gases and meet the criteria in section 2.1.6.3.1) may be used for determining CE.
2.1.6.3.1.2 Operate each monitor in its normal sampling mode as nearly as possible. The calibration gas shall be injected into the sample system as close to the sampling probe outlet as practical and should pass through all CEMS components used during normal sampling. Challenge the CEMS three non-consecutive times at each measurement point and record the responses. The duration of each gas injection should be sufficient to ensure that the CEMS surfaces are conditioned.
2.1.6.3.2 Calculations. Summarize the results on a data sheet. An example data sheet is shown in Figure 2.1-2. Average the differences between the instrument response and the certified cylinder gas value for each gas. Calculate three CE results (five CE results for a single-range CO CEMS) according to Equation 5 (section 2.1.7.5). No confidence coefficient is used in CE calculations.
2.1.6.4 Relative Accuracy Test Procedure.
2.1.6.4.1 Sampling Strategy for PTM tests. Conduct the PTM tests in such a way that they will yield measurements representative of the emissions from the source and can be correlated to the CEMS data. Although it is preferable to conduct the CO, diluent, and moisture (if needed) simultaneously, moisture measurements that are taken within a 60-minute period which includes the simultaneous CO and O 2 measurements may be used to calculate the dry CO concentration. Note:At times, CEMS RA tests may be conducted during incinerator performance tests. In these cases, PTM results obtained during CEMS RA tests may be used to determine compliance with incinerator emissions limits as long as the source and test conditions are consistent with the applicable regulations.
Figure 2.1-1 Calibration Error Determination
2.1.6.4.2 Performance Test Methods.
2.1.6.4.2.1 Unless otherwise specified in the regulations, method 3 or 3A and method 10, 10A, or 10B (40 CFR part 60, appendix A) are the test methods for O 2 and CO, respectively. Make a sample traverse of at least 21 minutes, sampling for 7 minutes at each of three traverse points (see section 3.2).
2.1.6.4.2.2 When the installed CEMS uses a nondispersive infrared (NDIR) analyzer, method 10 shall use the alternative interference trap specified in section 10.1 of the method. An option, which may be approved by the Director in certain cases, would allow the test to be conducted using method 10 without the interference trap. Under this option, a laboratory interference test is performed for the analyzer prior to the field test. The laboratory interference test includes the analysis of SO 2, NO, and CO 2 calibration gases over the range of expected effluent concentrations. Acceptable performance is indicated if the CO analyzer response to each of the gases is less than 1 percent of the applicable measurement range of the analyzer.
2.1.6.4.3 Number of PTM Tests. Conduct a minimum of nine sets of all necessary PTM tests. If more than nine sets are conducted, a maximum of three sets may be rejected at the tester's discretion. The total number of sets used to determine the RA must be greater than or equal to nine. All data, including the rejected data, must be reported.
2.1.6.4.4 Correlation of PTM and CEMS Data. The time and duration of each PTM test run and the CEMS response time should be considered in correlating the data. Use the CEMS final output (the one used for reporting) to determine an integrated average CO concentration for each PTM test run. Confirm that the pair of results are on a consistent moisture and O 2 concentration basis. Each integrated CEMS value should then be compared against the corresponding average PTM value. If the CO concentration measured by the CEMS is normalized to a specified diluent concentration, the PTM results shall be normalized to the same value .
2.1.6.4.5 Calculations. Summarize the results on a data sheet. Calculate the mean of the PTM values and calculate the arithmetic differences between the PTM and the CEMS data sets. The mean of the differences, standard deviation, confidence coefficient, and CEMS RA should be calculated using Equations 1 through 4.
2.1.7 Equations
2.1.7.1 Arithmetic Mean (d). Calculate d of the difference of a data set using Equation 1.
where: n=Number of data points.
When the mean of the differences of pairs of data is calculated, correct the data for moisture, if applicable.
2.1.7.2 Standard Deviation (S d). Calculate S d using Equation 2.
2.1.7.3 Confidence Coefficient (CC). Calculate the 2.5 percent error CC (one-tailed) using Equation 3.
where:
t 0.975 =t-value (see Table 2.1-4)
Table 2.1-4 -t Values
__________________________________________________________
n [FNa] t 0.975 n [FNa] t 0.975 n [FNa] t 0.975
__________________________________________________________
2 12.706 7 2.447 12 2.201
3 4.303 8 2.365 13 2.179
4 3.182 9 2.306 14 2.160
5 2.776 10 2.662 15 2.145
6 2.571 11 2.228 16 2.131
__________________________________________________________
[FNFOOTNOTE:] a The values in this table are already corrected for n-1 degrees of freedom.
Use n equal to the number of individual values.
2.1.7.4 Relative Accuracy. Calculate the RA of a set of data using Equation 4.
where:
Image 9 not available via Offline Print, but may be viewed on westlaw.com.
where:
Image 11 not available via Offline Print, but may be viewed on westlaw.com.
2.1.8 Reporting
At a minimum, summarize in tabular form the results of the CD, RA, response time, and CE test, as appropriate. Include all data sheets, calculations, CEMS data records, and cylinder gas or reference material certifications.
2.1.9 Alternative Procedure
2.1.9.1 Alternative RA Procedure Rationale. Under some operating conditions, it may not be possible to obtain meaningful results using the RA test procedure. This includes conditions where consistent, very low CO emissions or low CO emissions interrupted periodically by short duration, high level spikes are observed. It may be appropriate in these circumstances to waive the PTM RA test and substitute the following procedure.
2.1.9.2 Alternative RA Procedure. Conduct a complete CEMS status check following the manufacturer's written instructions. The check should include operation of the light source, signal receiver, timing mechanism functions, data acquisition and data reduction functions, data recorders, mechanically operated functions (mirror movements, calibration gas valve operations, etc.), sample filters, sample line heaters, moisture traps, and other related functions of the CEMS, as applicable. All parts of the CEMS must be functioning properly before the RA requirement can be waived. The instruments must also have successfully passed the CE and CD requirements of the performance specifications. Substitution of the alternative procedure requires approval of the Director.
2.1.10 Quality Assurance (QA)
Proper calibration, maintenance, and operation of the CEMS is the responsibility of the owner or operator. The owner or operator must establish a QA program to evaluate and monitor CEMS performance. As a minimum, the QA program must include:
2.1.10.1 A daily calibration check for each monitor. The calibration must be adjusted if the check indicates the instrument's CD exceeds the specification established in section 2.1.4.5. The gases shall be injected as close to the probe as possible to provide a check of the entire sampling system. If an alternative calibration procedure is desired (e.g., direct injections or gas cells), subject to Director's approval, the adequacy of this alternative procedure may be demonstrated during the initial 7-day CD test. Periodic comparisons of the two procedures are suggested.
2.1.10.2 A daily system audit. The audit must include a review of the calibration check data, an inspection of the recording system, an inspection of the control panel warning lights, and an inspection of the sample transport and interface system (e.g., flowmeters, filters), as appropriate.
2.1.10.3 A quarterly calibration error (CE) test. Quarterly RA tests may be substituted for the CE test when approved by the Director on a case-by-case basis.
2.1.10.4 An annual performance specification test.
2.1.11 References
1. Jahnke, James A. and G.J. Aldina, "Handbook: Continuous Air Pollution Source Monitoring Systems," U.S. Environmental Protection Agency Technology Transfer, Cincinnati, Ohio 45268, EPA-625/6-79-005, June 1979.
2. "Gaseous Continuous Emissions Monitoring Systems--Performance Specification Guidelines for SO 2, NO x, CO 2, O 2, and TRS." U.S. Environmental Protection Agency OAQPS, ESED, Research Triangle Park, North Carolina 27711, EPA-450/3-82-026, October 1982.
3. "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume I. Principles." U.S. Environmental Protection Agency ORD/EMSL, Research Triangle Park, North Carolina, 27711, EPA-600/9-76-006, December 1984.
4. Michie, Raymond, M. Jr., et al., "Performance Test Results and Comparative Data for Designated Reference Methods for Carbon Monoxide," U.S. Environmental Protection Agency ORD/EMSL, Research Triangle Park, North Carolina, 27711, EPA-600/S4-83-013, September 1982.
5. Ferguson, B.B., R.E. Lester, and W.J. Mitchell, "Field Evaluation of Carbon Monoxide and Hydrogen Sulfide Continuous Emission Monitors at an Oil Refinery," U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, EPA-600/4-82-054, August 1982.
2.2 Performance Specifications for Continuous Emission Monitoring of Hydrocarbons for Incinerators, Boilers, and Industrial Furnaces Burning Hazardous Waste
2.2.1 Applicability and Principle
2.2.1.1 Applicability. These performance specifications apply to hydrocarbon (HC) continuous emission monitoring systems (CEMSs) installed on incinerators, boilers, and industrial furnaces burning hazardous waste. The specifications include procedures which are intended to be used to evaluate the acceptability of the CEMS at the time of its installation or whenever specified in regulations or permits. The procedures are not designed to evaluate CEMS performance over an extended period of time. The source owner or operator is responsible for the proper calibration, maintenance, and operation of the CEMS at all times.
2.2.1.2 Principle. A gas sample is extracted from the source through a heated sample line and heated filter (except as provided by section 2.2.10) to a flame ionization detector (FID). Results are reported as volume concentration equivalents of propane. Installation and measurement location specifications, performance and equipment specifications, test and data reduction procedures, and brief quality assurance guidelines are
included in the specifications. Calibration drift, calibration error, and response time tests are conducted to determine conformance of the CEMS with the specifications.
2.2.2 Definitions
2.2.2.1 Continuous Emission Monitoring System (CEMS). The total equipment used to acquire data, which includes sample extraction and transport hardware, analyzer, data recording and processing hardware, and software. The system consists of the following major subsystems:
2.2.2.1.1 Sample Interface. That portion of the system that is used for one or more of the following: Sample acquisition, sample transportation, sample conditioning, or protection of the analyzer from the effects of the stack effluent.
2.2.2.1.2 Organic Analyzer. That portion of the system that senses organic concentration and generates an output proportional to the gas concentration.
2.2.2.1.3 Data Recorder. That portion of the system that records a permanent record of the measurement values. The data recorder may include automatic data reduction capabilities.
2.2.2.2 Instrument Measurement Range. The difference between the minimum and the maximum concentration that can be measured by a specific instrument. The minimum is often stated or assumed to be zero and the range expressed only as the maximum.
2.2.2.3 Span or Span Value. Full scale instrument measurement range.
2.2.2.4 Calibration Gas. A known concentration of a gas in an appropriate diluent gas.
2.2.2.5 Calibration Drift (CD). The difference in the CEMS output readings from the established reference value after a stated period of operation during which no unscheduled maintenance, repair, or adjustment takes place. A CD test is performed to demonstrate the stability of the CEMS calibration over time.
2.2.2.6 Response Time. The time interval between the start of a step change in the system input (e.g., change of calibration gas) and the time when the data recorder displays 95 percent of the final value.
2.2.2.7 Accuracy. A measurement of agreement between a measured value and an accepted or true value, expressed as the percentage difference between the true and measured values relative to the true value. For these performance specifications, accuracy is checked by conducting a calibration error (CE) test.
2.2.2.8 Calibration Error (CE). The difference between the concentration indicated by the CEMS and the known concentration of the cylinder gas. A CE test procedure is performed to document the accuracy and linearity of the monitoring equipment over the entire measurement range.
2.2.2.9 Performance Specification Test (PST) Period. The period during which the CD, CE, and response time tests are conducted.
2.2.2.10 Centroidal Area. A concentric area that is geometrically similar to the stack or duct cross section and is no greater than 1 percent of the stack or duct cross-sectional area.
2.2.3 Installation and Measurement Location Specifications
2.2.3.1 CEMS Installation and Measurement Locations. The CEMS shall be installed in a location in which measurements representative of the source's emissions can be obtained. The optimum location of the sample interface for the CEMS is determined by a number of factors, including ease of access for calibration and maintenance, the degree to which sample conditioning will be required, the degree to which it represents total emissions, and the degree to which it represents the combustion situation in the firebox. The location should be as free from in-leakage influences as possible and reasonably free from severe flow disturbances. The sample location should be at least two equivalent duct diameters downstream from the nearest control device, point of pollutant generation, or other point at which a change in the pollutant concentration or emission rate occurs and at least 0.5 diameter upstream from the exhaust or control device. The equivalent duct diameter is calculated as per 40 CFR part 60, appendix A, method 1, section 2.1. If these criteria are not achievable or if the location is otherwise less than optimum, the possibility of stratification should be investigated as described in section 2.2.3.2. The measurement point shall be within the centroidal area of the stack or duct cross section.
2.2.3.2 Stratification Test Procedure. Stratification is defined as a difference in excess of 10 percent between the average concentration in the duct or stack and the concentration at any point more than 1.0 meter from the duct or stack wall. To determine whether effluent stratification exists, a dual probe system should be used to determine the average effluent concentration while measurements at each traverse point are being made. One probe, located at the stack or duct centroid, is used as a stationary reference point to indicate the change in effluent concentration over time. The second probe is used for sampling at the traverse points specified in 40 CFR part 60 appendix A, method 1. The monitoring system samples sequentially at the reference and traverse points throughout the testing period for five minutes at each point.
2.2.4 CEMS Performance and Equipment Specifications
If this method is applied in highly explosive areas, caution and care shall be exercised in choice of equipment and installation.
2.2.4.1 Flame Ionization Detector (FID) Analyzer. A heated FID analyzer capable of meeting or exceeding the requirements of these specifications. Heated systems shall maintain the temperature of the sample gas between 150 degrees C (300 degrees F) and 175 degrees C (350 degrees F) throughout the system. This requires all system components such as the probe, calibration valve, filter, sample lines, pump, and the FID to be kept heated at all times such that no moisture is condensed out of the system. Note: As specified in the regulations, unheated HC CEMs may be considered an acceptable interim alternative monitoring technique. For additional notes, see section 2.2.10. The essential components of the measurement system are described below:
2.2.4.1.1 Sample Probe. Stainless steel, or equivalent, to collect a gas sample from the centroidal area of the stack cross-section.
2.2.4.1.2 Sample Line. Stainless steel or Teflon tubing to transport the sample to the analyzer. Note:Mention of trade names or specific products does not constitute endorsement by the Department.
2.2.4.1.3 Calibration Valve Assembly. A heated three-way valve assembly to direct the zero and calibration gases to the analyzer is recommended. Other methods, such as quick-connect lines, to route calibration gas to the analyzers are applicable.
2.2.4.1.4 Particulate Filter. An in-stack or out-of-stack sintered stainless steel filter is recommended if exhaust gas particulate loading is significant. An out-of-stack filter must be heated.
2.2.4.1.5 Fuel. The fuel specified by the manufacturer (e.g., 40 percent hydrogen/60 percent helium, 40 percent hydrogen/60 percent nitrogen gas mixtures, or pure hydrogen) should be used.
2.2.4.1.6 Zero Gas. High purity air with less than 0.1 parts per million by volume (ppm) HC as methane or carbon equivalent or less than 0.1 percent of the span value, whichever is greater.
2.2.4.1.7 Calibration Gases. Appropriate concentrations of propane gas (in air or nitrogen). Preparation of the calibration gases should be done according to the procedures in US EPA Protocol 1. In addition, the manufacturer of the cylinder gas should provide a recommended shelf life for each calibration gas cylinder over which the concentration does not change by more than +2 percent from the certified value.
2.2.4.2 CEMS Span Value. 100 ppm propane.
2.2.4.3 Daily Calibration Gas Values. The owner or operator must choose calibration gas concentrations that include zero and high-level calibration values.
2.2.4.3.1 The zero level may be between 0 and 20 ppm (zero and 20 percent of the span value).
2.2.4.3.2 The high-level concentration shall be between 50 and 90 ppm (50 and 90 percent of the span value).
2.2.4.4 Data Recorder Scale. The strip chart recorder, computer, or digital recorder must be capable of recording all readings within the CEMS's measurement range and shall have a resolution of 0.5 ppm (0.5 percent of span value).
2.2.4.5 Response Time. The response time for the CEMS must not exceed 2 minutes to achieve 95 percent of the final stable value.
2.2.4.6 Calibration Drift. The CEMS must allow the determination of CD at the zero and high-level values. The CEMS calibration response must not differ by more than +3 ppm (+3 percent of the span value) after each 24-hour period of the 7-day test at both zero and high levels.
2.2.4.7 Calibration Error. The mean difference between the CEMS and reference values at all three test points listed below shall be no greater than 5 ppm (+5 percent of the span value).
2.2.4.7.1 Zero Level. Zero to 20 ppm (0 to 20 percent of span value).
2.2.4.7.2 Mid-Level. 30 to 40 ppm (30 to 40 percent of span value).
2.2.4.7.3 High-Level. 70 to 80 ppm (70 to 80 percent of span value).
2.2.4.8 Measurement and Recording Frequency. The sample to be analyzed shall pass through the measurement section of the analyzer without interruption. The detector shall measure the sample concentration at least once every 15 seconds. An average emission rate shall be computed and recorded at least once every 60 seconds.
2.2.4.9 Hourly Rolling Average Calculation. The CEMS shall calculate every minute an hourly rolling average, which is the arithmetic mean of the 60 most recent 1-minute average values.
2.2.4.10 Retest. If the CEMS produces results within the specified criteria, the test is successful. If the CEMS does not meet one or more of the criteria, necessary corrections must be made and the performance tests repeated.
2.2.5 Performance Specification Test (PST) Periods
2.2.5.1 Pretest Preparation Period. Install the CEMS, prepare the PTM test site according to the specifications in section 2.2.3, and prepare the CEMS for operation and calibration according to the manufacturer's written instructions. A pretest conditioning period similar to that of the 7-day CD test is recommended to verify the operational status of the CEMS.
2.2.5.2 Calibration Drift Test Period. While the facility is operating under normal conditions, determine the magnitude of the CD at 24-hour intervals for seven consecutive days according to the procedure given in section 2.2.6.1. All CD determinations must be made following a 24-hour period during which no unscheduled maintenance, repair, or adjustment takes place. If the combustion unit is taken out of service during the test period, record the onset and duration of the downtime and continue the CD test when the unit resumes operation.
2.2.5.3 Calibration Error Test and Response Time Test Periods. Conduct the CE and response time tests during the CD test period.
2.2.6 Performance Specification Test Procedures
2.2.6.1 Calibration Drift Test.
2.2.6.1.1 Sampling Strategy. Conduct the CD test at 24-hour intervals for seven consecutive days using calibration gases at the two daily concentration levels specified in section 2.2.4.3. Introduce the two calibration gases into the sampling system as close to the sampling probe outlet as practical. The gas shall pass through all CEM components used during normal sampling. If periodic automatic or manual adjustments are made to the CEMS zero and calibration settings, conduct the CD test immediately before these adjustments, or conduct it in such a way that the CD can be determined. Record the CEMS response and subtract this value from the reference (calibration gas) value. To meet the specification, none of the differences shall exceed 3 ppm.
2.2.6.1.2 Calculations. Summarize the results on a data sheet. An example is shown in Figure 2.2-1. Calculate the differences between the CEMS responses and the reference values.
2.2.6.2 Response Time. The entire system including sample extraction and transport, sample conditioning, gas analyses, and the data recording is checked with this procedure.
2.2.6.2.1 Introduce the calibration gases at the probe as near to the sample location as possible. Introduce the zero gas into the system. When the system output has stabilized (no change greater than 1 percent of full scale for 30 sec), switch to monitor stack effluent and wait for a stable value. Record the time (upscale response time) required to reach 95 percent of the final stable value.
2.2.6.2.2 Next, introduce a high-level calibration gas and repeat the above procedure. Repeat the entire procedure three times and determine the mean upscale and downscale response times. The longer of the two means is the system response time.
2.2.6.3 Calibration Error Test Procedure.
2.2.6.3.1 Sampling Strategy. Challenge the CEMS with zero gas and US EPA Protocol 1 cylinder gases at measurement points within the ranges specified in section 2.2.4.7.
2.2.6.3.1.1. The daily calibration gases, if Protocol 1, may be used for this test.
2.2.6.3.1.2 Operate the CEMS as nearly as possible in its normal sampling mode. The calibration gas should be injected into the sampling system as close to the sampling probe outlet as practical and shall pass through all filters, scrubbers, conditioners, and other monitor components used during normal sampling. Challenge the CEMS three non-consecutive times at each measurement point and record the responses. The duration of each gas injection should be for a sufficient period of time to ensure that the CEMS surfaces are conditioned.
2.2.6.3.2 Calculations. Summarize the results on a data sheet. An example data sheet is shown in Figure 2.2-2. Average the differences between the instrument response and the certified cylinder gas value for each gas. Calculate three CE results according to Equation 1. No confidence coefficient is used in CE calculations.
2.2.7 Equations
2.2.7.1 Calibration Error. Calculate CE using Equation 1.
(Eq. 1)
Where:
2.2.8 Reporting
At a minimum, summarize in tabular form the results of the CD, response time, and CE test, as appropriate. Include all data sheets, calculations, CEMS data records, and cylinder gas or reference material certifications.
*Acceptance Criteria: 33% of span each day for seven days.
Figure 2.2-1 Calibration Drift Determination
Figure 2.2-2 Calibration Error Determination
2.2.9 Quality Assurance (QA)
Proper calibration, maintenance, and operation of the CEMS is the responsibility of the owner or operator. The owner or operator must establish a QA program to evaluate and monitor CEMS performance. As a minimum, the QA program must include:
2.2.9.1 A daily calibration check for each monitor. The calibration must be adjusted if the check indicates the instrument's CD exceeds 3 ppm. The gases shall be injected as close to the probe as possible to provide a check of the entire sampling system. If an alternative calibration procedure is desired (e.g., direct injections or gas cells), subject to Director's approval, the adequacy of this alternative procedure may be demonstrated during the initial 7-day CD test. Periodic comparisons of the two procedures are suggested.
2.2.9.2 A daily system audit. The audit must include a review of the calibration check data, an inspection of the recording system, an inspection of the control panel warning lights, and an inspection of the sample transport and interface system (e.g., flowmeters, filters), as appropriate.
2.2.9.3 A quarterly CE test. Quarterly RA tests may be substituted for the CE test when approved by the Director on a case-by-case basis.
2.2.9.4 An annual performance specification test.
2.2.10 Alternative Measurement Technique
The regulations allow gas conditioning systems to be used in conjunction with unheated HC CEMs during an interim period. This gas conditioning may include cooling to not less than 40 [FNo] F and the use of condensate traps to reduce the moisture content of sample gas entering the FID to less than 2 percent. The gas conditioning system, however, must not allow the sample gas to bubble through the condensate as this would remove water soluble organic compounds. All components upstream of the conditioning system should be heated as described in section 2.2.4 to minimize operating and maintenance problems.
2.2.11 References
1. Measurement of Volatile Organic Compounds-Guideline Series. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, EPA-450/2-78-041, June 1978.
2. Traceability Protocol for Establishing True Concentrations of Gases Used for Calibration and Audits of Continuous Source Emission Monitors (Protocol No. 1). U.S. Environmental Protection Agency ORD/EMSL, Research Triangle Park, North Carolina, 27711, June 1978.
3. Gasoline Vapor Emission Laboratory Evaluation-Part 2. U.S. Environmental Protection Agency, OAQPS, Research Triangle Park, North Carolina, 27711, EMB Report No. 76-GAS-6, August 1975.
SECTION 3.0 SAMPLING AND ANALYTICAL METHODS Note:The sampling and analytical methods to the BIF manual are published in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," U.S. EPA Publication SW-846, third edition and updates, as incorporated by reference in Section 66260.11 of this Division.
SECTION 4.0 PROCEDURE FOR ESTIMATING THE TOXICITY EQUIVALENCY OF CHLORINATED DIBENZO-P-DIOXIN AND DIBENZOFURAN CONGENERS
PCDDs and PCDFs must be determined using the method given in section 3.4 of this document. In this method, individual congeners or homologues [FN1] are measured and then summed to yield a total PCDD/PCDF value. No toxicity factors are specified in the method to compute risks from such emissions.
[FNFOOTNOTE:] 1 The term "congener" refers to any one particular member of the same chemical family; e.g., there are 75 congeners of chlorinated dibenzo-p-dioxins. The term "homologue" refers to a group of structurally related chemicals that have the same degree of chlorination. For example, there are eight homologues of CDs, monochlorinated through octachlorinated. Dibenzo-p-dioxins and dibenzofurans that are chlorinated at the 2,3,7 and 8 positions are denoted as "2378" congeners, except when 2, 3, 7, 8-TCDD is uniquely referred to: e.g., 1, 2, 3, 7, 8-PeCDF and 2, 3, 4, 7, 8- PeCDF are both referred to as "2378-PeCDFs."
For the purpose of estimating risks posed by emissions from boilers and industrial furnaces, however, specific congeners and homologues must be measured using the specified method and then multiplied by the assigned toxicity equivalence factors (TEFs), using procedures described in "Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-Dioxins and Dibenzofurans (CDDs and CDFs) and 1989 Update," EPA/625/3-89/016, March 1989. The resulting 2, 3, 7, 8-TCDD equivalents value is used in the subsequent risk calculations and modeling efforts as discussed in the BIF final rule.
The procedure for calculating the 2, 3, 7, 8-TCDD equivalent is as follows:
1. Using method 23, determine the concentrations of 2, 7, 3,8-congeners of various PCDDs and PCDFs in the sample.
2. Multiply the congener concentrations in the sample by the TEF listed in Table 4.0-1 to express the congener concentrations in terms of 2, 3, 7, 8-TCDD equivalent. Note that congeners not chlorinated at 2, 3, 7, and 8 positions have a zero toxicity factor in this table.
3. Add the products obtained in step 2, to obtain the total 2, 3, 7, 8-TCDD equivalent in the sample.
Sampling calculations are provided in US EPA document No. EPA/625/3-89/016, March 1989, which can be obtained from the US EPA, ORD Publications Office, Cincinnati, Ohio (Phone no. 513-569-7562).
Table 4.0-1. -2,3,7,8-TCDD Toxicity Equivalence Factors (TEFs) [FN1]
TABULAR OR GRAPHIC MATERIAL SET AT THIS POINT IS NOT DISPLAYABLE
______________________________
Mono-, Di-, and TriCDDs 0
2,3,7,8-TCDD 1
Other TCDDs 0
2,3,7,8-PeCDD 0.5
Other PeCDDs 0
2,3,7,8-HxCDD 0.1
Other HxCDDs 0
2,3,7,8-HpCDD 0.01
Other HpCDDs 0
OCDD 0.001
Mono-, Di-, and TriCDFs 0
2,3,7,8-TCDF 0.1
Other TCDFs 0
1,2,3,7,8-PeCDF 0.05
2,3,4,7,8-PeCDF 0.5
Other PeCDFs 0
2378-HxCDFs 0.1
Other HxCDFs 0
2378-HpCDFs 0.01
Other HpCDFs 0
OCDF 0.001
______________________________
Reference: Adapted from NATO/CCMS, 1988a.
[FNFOOTNOTE:] 1 Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-Dioxins and Dibenzofurans (CDDs and CDFs) 1989 Update EPA/625/3-89/016, March 1989.
SECTION 5.0 HAZARDOUS WASTE COMBUSTION AIR QUALITY SCREENING PROCEDURE
The HWCAQSP is a combined calculation/reference table approach for conservatively estimating short-term and annual average facility impacts for stack emissions. The procedure is based on extensive short-term modeling of 11 generic source types and on a set of adjustment factors for estimating annual average concentrations from short-term concentrations. Facility impacts may be determined based on the selected worst-case stack or on multiple stacks, in which the impacts from each stack are estimated separately and then added to produce the total facility impact.
This procedure is most useful for facilities with multiple stacks, large source-to-property boundary distances, and complex terrain between 1 and 5 km from the facility. To ensure a sufficient degree of conservatism, the HWCAQSP may not be used if any of the five screening procedure limitations listed below are true:
w The facility is located in a narrow valley less than 1 km wide;
w The facility has a stack taller than 20 m and is located such that the terrain rises to the stack height within 1 km of the facility;
w The facility has a stack taller than 20 m and is located within 5 km of the shoreline of a large body of water;
w The facility property line is within 200 m of the stack and the physical stack height is less than 10 m; or
w On-site receptors are of concern, and stack height is less than 10 m.
If any of these criteria are met or the Director determines that this procedure is not appropriate, then detailed site-specific modeling or modeling using the "Screening Procedures for Estimating the Air Quality Impact of Stationary Sources," EPA-450/4-88-010, Office of Air Quality Planning and Standards, August 1988, is required. Detailed site-specific dispersion modeling must conform to the US EPA "Guidance on Air Quality Models (Revised)", EPA 450/2-78- 027R, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, July 1986. This document provides guidance on both the proper selection and regulatory application of air quality models.
Introduction
The Hazardous Waste Combustion Air Quality Screening Procedure (HWCAQSP) (also referred to hereafter as "the screening procedure" or "the procedure") provides a quick, easy method for estimating maximum (hourly) and annual average ambient air impacts associated with the combustion of hazardous waste. The methodology is conservative in nature and estimates dispersion coefficients [FN1] based on facility-specific information.
[FNFOOTNOTE:] 1 The term dispersion coefficient refers to the change in ambient air concentration (mg/m [FN3]) resulting from a source with an emission rate of 1 g/sec.
The screening procedure can be used to determine emissions limits at sites where the nearest meteorological (STAR) station is not representative of the meteorology at the site. If the screen shows that emissions from the site are adequately protective, then the need to collect site-specific meteorologic data can be eliminated.
The screening procedure is generally most helpful for facilities meeting one or more of the following conditions:
w Multiple stacks with substantially different release specifications (e.g., stack heights differ by >50 percent, exit temperatures differ by >50 [FNo] K, or the exit flow rates differ by more than a factor of 2),
w Terrain located between 1 km and 5 km from the site increases in elevation by more than the physical height of the shortest stack (i.e., the facility is located in complex terrain), or
w Significant distance between the facility's stacks and the site boundary [guidance on determining whether a distance is "significant" is provided in Step 6(B) of the procedure].
Step 1 through 9 of the screening procedure present a simplified method for determining emissions based on the use of the "worst- case" stack. If the simplified method shows that desired feed rates result in emissions that exceed allowable limits for one or more pollutants, a refined analysis to examine the emissions from each stack can be conducted. This multiple-stack method is presented in Step 10.
The steps involved in screening methodology are as follows:
Step 1. Define Source Characteristics
Step 2. Determine the Applicability of the Screening Procedure
Step 3. Select the Worst-Case Stack
Step 4. Verify Good Engineering Practice (GEP) Criteria
Step 5. Determine the Effective Stack Height and Terrain-Adjusted Effective Stack Height
Step 6. Classify the Site as Urban or Rural
Step 7. Determine Maximum Dispersion Coefficients
Step 8. Estimate Maximum Ambient Air Concentrations
Step 9. Determine Compliance With Regulatory Limits
Step 10. Multiple Stack Method
Step 1. Define Source Characteristics
Provide the following source data: [FN2]
[FNFOOTNOTE:] 2 Worksheet space is provided for three stacks. If the facility has additional stacks, copy the form and revise stack identification numbers for 4, 5, etc.
___________________________________________________
Stack Data: Stack Stack Stack
No. 1 No. 2 No. 3
___________________________________________________
Physical stack height (m) ___ ___ ___
Exhaust temperature ( [FNo] K) ___ ___ ___
Flow rate (m [FN3] /sec) ___ ___ ___
___________________________________________________
Nearby Building Dimensions
Consider all buildings within five building heights or five maximum projected widths of the stack(s). For the building with the greatest height, fill in the spaces below.
Building Height (m)
Maximum projected building width (m)
Nearby Terrain Data
Determine maximum terrain rise for the following three distance ranges from the facility (not required if the highest stack is less than 10 m in height):
_____(m) _____(m) _____(m)
0-0.5 km 0-2.5 km 0-5 km
Distance from facility to nearest shoreline (km)
Valley width (km)
Step 2. Determine the Applicability of the Screening Procedure
Fill in the following data:
Is the Facility in a valley < kmin width? Yes__ No__
Is the terrain rise within 1 km of the facility greater than the physical stack height? (Only app;ies to staacks <20 meters in height) __ __
Is the distance to the nearest shoreline < 5 km? (Only applies to facilities with stacks < 20 meters in height) __ __
For the building listed in Step 1, is the closest property boundary < 5 times the building height or < 5 times the maximum projected building width? (Only applies to facilities with a stack height < 2.5 times the building height) __ __
If the answer is "no" to all the preceding questions, then the HWCAQSP is acceptable. If the answer to any question is "yes", the procedure is not acceptable.
Step 3: Select the Worst-Case Stack
If the facility has several stacks, a worst-case stack must be chosen to conservatively represent release conditions at the facility. Follow the steps below to identify the worst-case stack.
Apply the following equation to each stack:
K = HVT
where:
K = an arbitrary parameter accounting for the relative influence of the stack height and plume rise.
H = Physical stack height (m)
V = Flow rate (m [FN3] /sec)
T = Exhaust temperature ( [FNo] K)
Complete the following table to compute the "K" value for each stack:
________________________________________________________________
Stack No. Stack X Flow rate X Exit temp = K
height (m) (m [FN3]/sec) (<>K)
________________________________________________________________
1 X X =
2 X X =
3 X X =
________________________________________________________________
Select the stack with the lowest "K" value. This is the worst-case stack that will be used for Steps 4 through 9.
Worst-Case Stack is identified as Stack No. ___
Step 4. Verify Good Engineering Practice (GEP) Criteria
Confirm that the selected worst-case stack meets Good Engineering Practice (GEP) criteria. The stack height to be used in the subsequent steps of this procedure must not be greater than the maximum GEP. Maximum and minimum GEP stack heights are defined as follows:
CEP (minimum) = H + (1.5 X L)
GEP (maximum) = greater of 65 m or H + (1.5 X L)
where:
H = height of the building selected in Step 1 measured from ground level elevation at the base of the stack
L = the lesser dimension of the height or projected width of the building selected in Step 1
Record the following data for the worse-case stack:
Stack height (m) =
H(m) =
L(m) =
Then compute the following:
GEP (minimum) (m) =
GEP (maximum) (m) =
w If the physical height of the worst-case stack exceeds the maximum GEP, then use the maximum GEP stack height for the subsequent steps of this analysis;
w If the physical height of the worst-case stack is less than the minimum GEP, then use generic source number 11 as the selected source for further analysis and proceed directly to Step 6;
w If the physical height of the worst-case stack is between the minimum and maximum GEP, then use the actual physical stack height for the subsequent steps of this analysis.
Step 5. Determine the Effective Stack Height and Terrain-Adjusted Effective Stack Height (TAESH)
The effective stack height is an important factor in dispersion modeling. The effective stack height is the physical height of the stack plus plume rise. As specified in Step 4, the stack height used to estimate the effective stack height must not exceed GEP requirements. Plume rise is a function of the stack exit gas temperature and flow rate.
In this analysis, the effective stack height is used to select the generic source that represents the dispersion characteristics of the facility. For facilities located in flat terrain and for all facilities with worst-case stacks less than or equal to 10 meters in height, generic source numbers are selected strictly on the basis of effective stack height. In all other cases, the effective stack height is further adjusted to take into account the terrain rise near the facility. This "terrain-adjusted effective stack height" (TAESH) is then used to select the generic source number that represents the dispersion characteristics of the facility. Follow the steps below to identify the effective stack height, the TAESH (where applicable), and the corresponding generic source number.
(A) Go to Table 5.0-1 and find the plume rise value corresponding to the stack temperature and exit flow rate for the worst-case stack determined in Step 3.
Plume rise = _____ (m)
(B) Add the plume rise to the GEP stack height of the worst-case stack determined in Steps 3 and 4.
GEP stack height (m) + Plume rise (m) = Effective stack
height (m)
_____ + _____________ =%_____________
(C) Go the first column of Table 5.0-2 and identify the range of effective stack heights that includes the effective stack height estimated in Step 5(B). Record the generic source number that corresponds to this range.
Generic source number =
(D) If the source is located in flat terrain [FN3], or if the generic source number identified in Step 5(C) above is 1 or 11 (regardless of terrain classifi-
cation), use the generic source number determined in Step 5(C) and proceed directly to Step 6. Otherwise, continue to Step 5(E).
[FNFOOTNOTE:] 3 The terrain is considered flat and terrain adjustment factors are not used if the maximum terrain rise within 5 km of the facility (see Step 1) is less than 10 percent of the physical stack height of the worst-case stack.
(E) For those situations where the conditions in Step 5(D) do not apply, the effective stack height must be adjusted for terrain. The TAESH for each distance range is computed by subtracting the terrain rise within the distance range from the effective stack height [FN4]. (continued)