CCLME.ORG - 40 CFR PART 50—NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS
Loading (50 kb)...'
(continued)

2.2.7 Constant temperature chamber. Chamber capable of housing the NO2 permeation device and maintaining its temperature to within ±0.1 °C.

2.2.8 Temperature measuring device. Device capable of measuring and monitoring the temperature of the NO2 permeation device with an accuracy of ±0.05 °C.

2.2.9 Valves. A valve may be used as shown in Figure 2 to divert the NO2 from the permeation device when zero air or NO is required at the manifold. A second valve may be used to divert the NO flow when zero air or NO2 is required at the manifold.

The valves should be constructed of glass, Teflon®, or other nonreactive material.

2.2.10 Mixing chamber. A chamber constructed of glass, Teflon®, or other nonreactive material and designed to provide thorough mixing of pollutant gas streams and diluent air.

2.2.11 Output manifold. The output manifold should be constructed of glass, Teflon®, or other non-reactive material and should be of sufficient diameter to insure an insignificant pressure drop at the analyzer connection. The system must have a vent designed to insure atmospheric pressure at the manifold and to prevent ambient air from entering the manifold.

2.3 Reagents.

2.3.1 Calibration standards. Calibration standards are required for both NO and NO2. The reference standard for the calibration may be either an NO or NO2 standard, and must be traceable to a National Bureau of Standards (NBS) NO in N2 Standard Reference Material (SRM 1683 or SRM 1684), and NBS NO2 Standard Reference Material (SRM 1629), or an NBS/EPA-approved commercially available Certified Reference Material (CRM). CRM's are described in Reference 14, and a list of CRM sources is available from the address shown for Reference 14. Reference 15 gives recommended procedures for certifying an NO gas cylinder against an NO SRM or CRM and for certifying an NO2 permeation device against an NO2 SRM. Reference 13 contains procedures for certifying an NO gas cylinder against an NO2 SRM and for certifying an NO2 permeation device against an NO SRM or CRM. A procedure for determining the amount of NO2 impurity in an NO cylinder is also contained in Reference 13. The NO or NO2 standard selected as the reference standard must be used to certify the other standard to ensure consistency between the two standards.

2.3.1.1 NO2 Concentration standard. A permeation device suitable for generating NO2 concentrations at the required flow-rates over the required concentration range. If the permeation device is used as the reference standard, it must be traceable to an SRM or CRM as specified in 2.3.1. If an NO cylinder is used as the reference standard, the NO2 permeation device must be certified against the NO standard according to the procedure given in Reference 13. The use of the permeation device should be in strict accordance with the instructions supplied with the device. Additional information regarding the use of permeation devices is given by Scaringelli et al. (11) and Rook et al. (12).

2.3.1.2 NO Concentration standard. Gas cylinder containing 50 to 100 ppm NO in N2 with less than 1 ppm NO2. If this cylinder is used as the reference standard, the cylinder must be traceable to an SRM or CRM as specified in 2.3.1. If an NO2 permeation device is used as the reference standard, the NO cylinder must be certified against the NO2 standard according to the procedure given in Reference 13. The cylinder should be recertified on a regular basis as determined by the local quality control program.

2.3.3 Zero air. Air, free of contaminants which might react with NO or NO2 or cause a detectable response on the NO/NOX/NO2 analyzer. When using permeation devices that are sensitive to moisture, the zero air passing across the permeation device must be dry to avoid surface reactions on the device. (Refer to the supplier's instructions for use of the permeation device.) A procedure for generating zero air is given in reference 13.

2.4 Procedure.

2.4.1 Assemble the calibration apparatus such as the typical one shown in Figure 2.

2.4.2 Insure that all flowmeters are calibrated under the conditions of use against a reliable standard such as a soap bubble meter or wet-test meter. All volumetric flowrates should be corrected to 25 °C and 760 mm Hg. A discussion on the calibration of flowmeters is given in reference 13.

2.4.3 Install the permeation device in the constant temperature chamber. Provide a small fixed air flow (200–400 scm 3 /min) across the device. The permeation device should always have a continuous air flow across it to prevent large buildup of NO2 in the system and a consequent restabilization period. Record the flowrate as FP. Allow the device to stabilize at the calibration temperature for at least 24 hours. The temperature must be adjusted and controlled to within ±0.1 °C or less of the calibration temperature as monitored with the temperature measuring device.

2.4.4 Precautions must be taken to remove O2 and other contaminants from the NO pressure regulator and delivery system prior to the start of calibration to avoid any conversion of the standard NO to NO2. Failure to do so can cause significant errors in calibration. This problem may be minimized by

(1) Carefully evacuating the regulator, when possible, after the regulator has been connected to the cylinder and before opening the cylinder valve;

(2) Thoroughly flushing the regulator and delivery system with NO after opening the cylinder valve;

(3) Not removing the regulator from the cylinder between calibrations unless absolutely necessary. Further discussion of these procedures is given in reference 13.

2.4.5 Select the operating range of the NO/NOX NO2 analyzer to be calibrated. In order to obtain maximum precision and accuracy for NO2 calibration, all three channels of the analyzer should be set to the same range. If operation of the NO and NOX channels on higher ranges is desired, subsequent recalibration of the NO and NOX channels on the higher ranges is recommended.

Note: Some analyzer designs may require identical ranges for NO, NOX, and NO2 during operation of the analyzer.

2.4.6 Connect the recorder output cable(s) of the NO/NOX/NO2 analyzer to the input terminals of the strip chart recorder(s). All adjustments to the analyzer should be performed based on the appropriate strip chart readings. References to analyzer responses in the procedures given below refer to recorder responses.

2.4.7 Switch the valve to vent the flow from the permeation device and adjust the diluent air flowrate, FD, to provide zero air at the output manifold. The total air flow must exceed the total demand of the analyzer(s) connected to the output manifold to insure that no ambient air is pulled into the manifold vent. Allow the analyzer to sample zero air until stable NO, NOX, and NO2 responses are obtained. After the responses have stabilized, adjust the analyzer zero control(s).

Note: Some analyzers may have separate zero controls for NO, NOX, and NO2. Other analyzers may have separate zero controls only for NO and NOX, while still others may have only one zero common control to all three channels.

Offsetting the analyzer zero adjustments to +5% of scale is recommended to facilitate observing negative zero drift. Record the stable zero air responses as ZNO, ZNOX, and ZNO2.

2.4.8 Preparation of NO and NOX calibration curves.

2.4.8.1 Adjustment of NO span control. Adjust the NO flow from the standard NO cylinder to generate an NO concentration of approximately 80% of the upper range limit (URL) of the NO range. The exact NO concentration is calculated from:


where:

[NO]OUT = diluted NO concentration at the output manifold, ppm

FNO = NO flowrate, scm 3 /min

[NO]STD=concentration of the undiluted NO standard, ppm

FD = diluent air flowrate, scm 3 /min

Sample this NO concentration until the NO and NOX responses have stabilized. Adjust the NO span control to obtain a recorder response as indicated below:

recorder response (% scale)=


where:

URL = nominal upper range limit of the NO channel, ppm

Note: Some analyzers may have separate span controls for NO, NOX, and NO2. Other analyzers may have separate span controls only for NO and NOX, while still others may have only one span control common to all three channels. When only one span control is available, the span adjustment is made on the NO channel of the analyzer.

If substantial adjustment of the NO span control is necessary, it may be necessary to recheck the zero and span adjustments by repeating steps 2.4.7 and 2.4.8.1. Record the NO concentration and the analyzer's NO response.

2.4.8.2 Adjustment of NOX span control. When adjusting the analyzer's NOX span control, the presence of any NO2 impurity in the standard NO cylinder must be taken into account. Procedures for determining the amount of NO2 impurity in the standard NO cylinder are given in reference 13. The exact NOX concentration is calculated from:


where:

[NOX]OUT = diluted NOX cencentration at the output manifold, ppm

[NO2]IMP = concentration of NO2 impurity in the standard NO cylinder, ppm

Adjust the NOX span control to obtain a convenient recorder response as indicated below:

recorder response (% scale)


Note: If the analyzer has only one span control, the span adjustment is made on the NO channel and no further adjustment is made here for NOX.

If substantial adjustment of the NOX span control is necessary, it may be necessary to recheck the zero and span adjustments by repeating steps 2.4.7 and 2.4.8.2. Record the NOX concentration and the analyzer's NOX response.

2.4.8.3 Generate several additional concentrations (at least five evenly spaced points across the remaining scale are suggested to verify linearity) by decreasing FNO or increasing FD. For each concentration generated, calculate the exact NO and NOX concentrations using equations (16) and (18) respectively. Record the analyzer's NO and NOX responses for each concentration. Plot the analyzer responses versus the respective calculated NO and NOX concentrations and draw or calculate the NO and NOX calibration curves. For subsequent calibrations where linearity can be assumed, these curves may be checked with a two-point calibration consisting of a zero point and NO and NOX concentrations of approximately 80 percent of the URL.

2.4.9 Preparation of NO2 calibration curve.

2.4.9.1 Remove the NO flow. Assuming the NO2 zero has been properly adjusted while sampling zero air in step 2.4.7, switch the valve to provide NO2 at the output manifold.

2.4.9.2 Adjust FD to generate an NO2 concentration of approximately 80 percent of the URL of the NO2 range. The total air flow must exceed the demand of the analyzer(s) under calibration. The actual concentration of NO2 is calculated from:


where:

[NO2]OUT = diluted NO2 concentration at the output manifold, ppm

R = permeation rate, µg/min

K = 0.532 µl NO2/µg NO2 (at 25 °C and 760 mm Hg)

Fp = air flowrate across permeation device, scm 3 /min

FD = diluent air flowrate, scm 3 /min

Sample this NO2 concentration until the NOX and NO2 responses have stabilized. Adjust the NO2 span control to obtain a recorder response as indicated below:

recorder response (% scale)


Note: If the analyzer has only one or two span controls, the span adjustments are made on the NO channel or NO and NOX channels and no further adjustment is made here for NO2.

If substantial adjustment of the NO2 span control is necessary it may be necessary to recheck the zero and span adjustments by repeating steps 2.4.7 and 2.4.9.2. Record the NO2 concentration and the analyzer's NO2 response. Using the NOX calibration curve obtained in step 2.4.8, measure and record the NOX concentration as [NOX]M.

2.4.9.3 Adjust FD to obtain several other concentrations of NO2 over the NO2 range (at least five evenly spaced points across the remaining scale are suggested). Calculate each NO2 concentration using equation (20) and record the corresponding analyzer NO2 and NOX responses. Plot the analyzer's NO2 responses versus the corresponding calculated NO2 concentrations and draw or calculate the NO2 calibration curve.

2.4.10 Determination of converter efficiency.

2.4.10.1 Plot [NOX]M (y-axis) versus [NO2]OUT (x-axis) and draw or calculate the converter efficiency curve. The slope of the curve times 100 is the average converter efficiency, EC. The average converter efficiency must be greater than 96 percent; if it is less than 96 percent, replace or service the converter.

Note: Supplemental information on calibration and other procedures in this method are given in reference 13.

3. Frequency of calibration. The frequency of calibration, as well as the number of points necessary to establish the calibration curve and the frequency of other performance checks, will vary from one analyzer to another. The user's quality control program should provide guidelines for initial establishment of these variables and for subsequent alteration as operational experience is accumulated. Manufacturers of analyzers should include in their instruction/operation manuals information and guidance as to these variables and on other matters of operation, calibration, and quality control.

References

1. A. Fontijn, A. J. Sabadell, and R. J. Ronco, “Homogeneous Chemiluminescent Measurement of Nitric Oxide with Ozone,” Anal. Chem., 42, 575 (1970).

2. D. H. Stedman, E. E. Daby, F. Stuhl, and H. Niki, “Analysis of Ozone and Nitric Oxide by a Chemiluminiscent Method in Laboratory and Atmospheric Studies of Photochemical Smog,” J. Air Poll. Control Assoc., 22, 260 (1972).

3. B. E. Martin, J. A. Hodgeson, and R. K. Stevens, “Detection of Nitric Oxide Chemiluminescence at Atmospheric Pressure,” Presented at 164th National ACS Meeting, New York City, August 1972.

4. J. A. Hodgeson, K. A. Rehme, B. E. Martin, and R. K. Stevens, “Measurements for Atmospheric Oxides of Nitrogen and Ammonia by Chemiluminescence,” Presented at 1972 APCA Meeting, Miami, FL, June 1972.

5. R. K. Stevens and J. A. Hodgeson, “Applications of Chemiluminescence Reactions to the Measurement of Air Pollutants,” Anal. Chem., 45, 443A (1973).

6. L. P. Breitenbach and M. Shelef, “Development of a Method for the Analysis of NO2 and NH3 by NO-Measuring Instruments,” J. Air Poll. Control Assoc., 23, 128 (1973).

7. A. M. Winer, J. W. Peters, J. P. Smith, and J. N. Pitts, Jr., “Response of Commercial Chemiluminescent NO-NO2 Analyzers to Other Nitrogen-Containing Compounds,” Environ. Sci. Technol., 8, 1118 (1974).

8. K. A. Rehme, B. E. Martin, and J. A. Hodgeson, Tentative Method for the Calibration of Nitric Oxide, Nitrogen Dioxide, and Ozone Analyzers by Gas Phase Titration,” EPA-R2-73-246, March 1974.

9. J. A. Hodgeson, R. K. Stevens, and B. E. Martin, “A Stable Ozone Source Applicable as a Secondary Standard for Calibration of Atmospheric Monitors,” ISA Transactions, 11, 161 (1972).

10. A. E. O'Keeffe and G. C. Ortman, “Primary Standards for Trace Gas Analysis,” Anal. Chem., 38, 760 (1966).

11. F. P. Scaringelli, A. E. O'Keeffe, E. Rosenberg, and J. P. Bell, “Preparation of Known Concentrations of Gases and Vapors with Permeation Devices Calibrated Gravimetrically,” Anal. Chem., 42, 871 (1970).

12. H. L. Rook, E. E. Hughes, R. S. Fuerst, and J. H. Margeson, “Operation Characteristics of NO2 Permeation Devices,” Presented at 167th National ACS Meeting, Los Angeles, CA, April 1974.

13. E. C. Ellis, “Technical Assistance Document for the Chemiluminescence Measurement of Nitrogen Dioxide,” EPA-E600/4-75-003 (Available in draft form from the United States Environmental Protection Agency, Department E (MD–76), Environmental Monitoring and Support Laboratory, Research Triangle Park, NC 27711).

14. A Procedure for Establishing Traceability of Gas Mixtures to Certain National Bureau of Standards Standard Reference Materials. EPA–600/7–81–010, Joint publication by NBS and EPA. Available from the U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory (MD–77), Research Triangle Park, NC 27711, May 1981.

15. Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, Ambient Air Specific Methods. The U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Research Triangle Park, NC 27711. Publication No. EAP–600/4–77–027a.


[41 FR 52688, Dec. 1, 1976, as amended at 48 FR 2529, Jan 20, 1983]

Appendix G to Part 50—Reference Method for the Determination of Lead in Suspended Particulate Matter Collected From Ambient Air
top
1. Principle and applicability.

1.1 Ambient air suspended particulate matter is collected on a glass-fiber filter for 24 hours using a high volume air sampler. The analysis of the 24-hour samples may be performed for either individual samples or composites of the samples collected over a calendar month or quarter, provided that the compositing procedure has been approved in accordance with section 2.8 of appendix C to part 58 of this chapter—Modifications of methods by users. (Guidance or assistance in requesting approval under Section 2.8 can be obtained from the address given in section 2.7 of appendix C to part 58 of this chapter.)

1.2 Lead in the particulate matter is solubilized by extraction with nitric acid (HNO3), facilitated by heat or by a mixture of HNO3 and hydrochloric acid (HCl) facilitated by ultrasonication.

1.3 The lead content of the sample is analyzed by atomic absorption spectrometry using an air-acetylene flame, the 283.3 or 217.0 nm lead absorption line, and the optimum instrumental conditions recommended by the manufacturer.

1.4 The ultrasonication extraction with HNO3/HCl will extract metals other than lead from ambient particulate matter.

2. Range, sensitivity, and lower detectable limit. The values given below are typical of the methods capabilities. Absolute values will vary for individual situations depending on the type of instrument used, the lead line, and operating conditions.

2.1 Range. The typical range of the method is 0.07 to 7.5 µg Pb/m 3 assuming an upper linear range of analysis of 15 µg/ml and an air volume of 2,400 m 3 .

2.2 Sensitivity. Typical sensitivities for a 1 percent change in absorption (0.0044 absorbance units) are 0.2 and 0.5 µg Pb/ml for the 217.0 and 283.3 nm lines, respectively.

2.3 Lower detectable limit (LDL). A typical LDL is 0.07 µg Pb/m 3 . The above value was calculated by doubling the between-laboratory standard deviation obtained for the lowest measurable lead concentration in a collaborative test of the method.(15) An air volume of 2,400 m 3 was assumed.

3. Interferences. Two types of interferences are possible: chemical and light scattering.

3.1 Chemical. Reports on the absence (1, 2, 3, 4, 5) of chemical interferences far outweigh those reporting their presence, (6) therefore, no correction for chemical interferences is given here. If the analyst suspects that the sample matrix is causing a chemical interference, the interference can be verified and corrected for by carrying out the analysis with and without the method of standard additions.(7)

3.2 Light scattering. Nonatomic absorption or light scattering, produced by high concentrations of dissolved solids in the sample, can produce a significant interference, especially at low lead concentrations. (2) The interference is greater at the 217.0 nm line than at the 283.3 nm line. No interference was observed using the 283.3 nm line with a similar method.(1)

Light scattering interferences can, however, be corrected for instrumentally. Since the dissolved solids can vary depending on the origin of the sample, the correction may be necessary, especially when using the 217.0 nm line. Dual beam instruments with a continuum source give the most accurate correction. A less accurate correction can be obtained by using a nonabsorbing lead line that is near the lead analytical line. Information on use of these correction techniques can be obtained from instrument manufacturers' manuals.

If instrumental correction is not feasible, the interference can be eliminated by use of the ammonium pyrrolidinecarbodithioate-methylisobutyl ketone, chelation-solvent extraction technique of sample preparation.(8)

4. Precision and bias.

4.1 The high-volume sampling procedure used to collect ambient air particulate matter has a between-laboratory relative standard deviation of 3.7 percent over the range 80 to 125 µg/m 3 .(9) The combined extraction-analysis procedure has an average within-laboratory relative standard deviation of 5 to 6 percent over the range 1.5 to 15 µg Pb/ml, and an average between laboratory relative standard deviation of 7 to 9 percent over the same range. These values include use of either extraction procedure.

4.2 Single laboratory experiments and collaborative testing indicate that there is no significant difference in lead recovery between the hot and ultrasonic extraction procedures.(15)

5. Apparatus.

5.1 Sampling.

5.1.1 High-Volume Sampler. Use and calibrate the sampler as described in appendix B to this part.

5.2 Analysis.

5.2.1 Atomic absorption spectrophotometer. Equipped with lead hollow cathode or electrodeless discharge lamp.

5.2.1.1 Acetylene. The grade recommended by the instrument manufacturer should be used. Change cylinder when pressure drops below 50–100 psig.

5.2.1.2 Air. Filtered to remove particulate, oil, and water.

5.2.2 Glassware. Class A borosilicate glassware should be used throughout the analysis.

5.2.2.1 Beakers. 30 and 150 ml. graduated, Pyrex.

5.2.2.2 Volumetric flasks. 100-ml.

5.2.2.3 Pipettes. To deliver 50, 30, 15, 8, 4, 2, 1 ml.

5.2.2.4 Cleaning. All glassware should be scrupulously cleaned. The following procedure is suggested. Wash with laboratory detergent, rinse, soak for 4 hours in 20 percent (w/w) HNO3, rinse 3 times with distilled-deionized water, and dry in a dust free manner.

5.2.3 Hot plate.

5.2.4. Ultrasonication water bath, unheated. Commercially available laboratory ultrasonic cleaning baths of 450 watts or higher “cleaning power,” i.e., actual ultrasonic power output to the bath have been found satisfactory.

5.2.5 Template. To aid in sectioning the glass-fiber filter. See figure 1 for dimensions.

5.2.6 Pizza cutter. Thin wheel. Thickness 1mm.

5.2.7 Watch glass.

5.2.8 Polyethylene bottles. For storage of samples. Linear polyethylene gives better storage stability than other polyethylenes and is preferred.

5.2.9 Parafilm “M”. 1 American Can Co., Marathon Products, Neenah, Wis., or equivalent.

1 Mention of commercial products does not imply endorsement by the U.S. Environmental Protection Agency.

6. Reagents.

6.1 Sampling.

6.1.1 Glass fiber filters. The specifications given below are intended to aid the user in obtaining high quality filters with reproducible properties. These specifications have been met by EPA contractors.

6.1.1.1 Lead content. The absolute lead content of filters is not critical, but low values are, of course, desirable. EPA typically obtains filters with a lead content of 75 µg/filter.

It is important that the variation in lead content from filter to filter, within a given batch, be small.

6.1.1.2 Testing.

6.1.1.2.1 For large batches of filters (>500 filters) select at random 20 to 30 filters from a given batch. For small batches (>500 filters) a lesser number of filters may be taken. Cut one 3/4&inch;×8&inch; strip from each filter anywhere in the filter. Analyze all strips, separately, according to the directions in sections 7 and 8.

6.1.1.2.2 Calculate the total lead in each filter as


where:

Fb = Amount of lead per 72 square inches of filter, µg.

6.1.1.2.3 Calculate the mean, Fb, of the values and the relative standard deviation (standard deviation/mean × 100). If the relative standard deviation is high enough so that, in the analysts opinion, subtraction of Fb, (section 10.3) may result in a significant error in the µg Pb/m 3 , the batch should be rejected.

6.1.1.2.4 For acceptable batches, use the value of Fb to correct all lead analyses (section 10.3) of particulate matter collected using that batch of filters. If the analyses are below the LDL (section 2.3) no correction is necessary.

6.2 Analysis.

6.2.1 Concentrated (15.6 M) HNO3. ACS reagent grade HNO3 and commercially available redistilled HNO3 has found to have sufficiently low lead concentrations.

6.2.2 Concentrated (11.7 M) HCl. ACS reagent grade.

6.2.3 Distilled-deionized water. (D.I. water).

6.2.4 3 M HNO3. This solution is used in the hot extraction procedure. To prepare, add 192 ml of concentrated HNO3 to D.I. water in a 1 l volumetric flask. Shake well, cool, and dilute to volume with D.I. water. Caution: Nitric acid fumes are toxic. Prepare in a well ventilated fume hood.

6.2.5 0.45 M HNO3. This solution is used as the matrix for calibration standards when using the hot extraction procedure. To prepare, add 29 ml of concentrated HNO3 to D.I. water in a 1 l volumetric flask. Shake well, cool, and dilute to volume with D.I. water.

6.2.6 2.6 M HNO3+0 to 0.9 M HCl. This solution is used in the ultrasonic extraction procedure. The concentration of HCl can be varied from 0 to 0.9 M. Directions are given for preparation of a 2.6 M HNO3+0.9 M HCl solution. Place 167 ml of concentrated HNO3 into a 1 l volumetric flask and add 77 ml of concentrated HCl. Stir 4 to 6 hours, dilute to nearly 1 l with D.I. water, cool to room temperature, and dilute to 1 l.

6.2.7 0.40 M HNO3 + X M HCl. This solution is used as the matrix for calibration standards when using the ultrasonic extraction procedure. To prepare, add 26 ml of concentrated HNO3, plus the ml of HCl required, to a 1 l volumetric flask. Dilute to nearly 1 l with D.I. water, cool to room temperature, and dilute to 1 l. The amount of HCl required can be determined from the following equation:


where:

y = ml of concentrated HCl required.

x = molarity of HCl in 6.2.6.

0.15 = dilution factor in 7.2.2.

6.2.8 Lead nitrate, Pb(NO3)2. ACS reagent grade, purity 99.0 percent. Heat for 4 hours at 120 °C and cool in a desiccator.

6.3 Calibration standards.

6.3.1 Master standard, 1000 µg Pb/ml in HNO3. Dissolve 1.598 g of Pb(NO3)2 in 0.45 M HNO3 contained in a 1 l volumetric flask and dilute to volume with 0.45 M HNO3.

6.3.2 Master standard, 1000 µg Pb/ml in HNO3/HCl. Prepare as in section 6.3.1 except use the HNO3/HCl solution in section 6.2.7.

Store standards in a polyethylene bottle. Commercially available certified lead standard solutions may also be used.

7. Procedure.

7.1 Sampling. Collect samples for 24 hours using the procedure described in reference 10 with glass-fiber filters meeting the specifications in section 6.1.1. Transport collected samples to the laboratory taking care to minimize contamination and loss of sample.(16).

7.2 Sample preparation.

7.2.1 Hot extraction procedure.

7.2.1.1 Cut a 3/4&inch;×8&inch; strip from the exposed filter using a template and a pizza cutter as described in Figures 1 and 2. Other cutting procedures may be used.

Lead in ambient particulate matter collected on glass fiber filters has been shown to be uniformly distributed across the filter. 1,3,11 Another study 12 has shown that when sampling near a roadway, strip position contributes significantly to the overall variability associated with lead analyses. Therefore, when sampling near a roadway, additional strips should be analyzed to minimize this variability.

7.2.1.2 Fold the strip in half twice and place in a 150-ml beaker. Add 15 ml of 3 M HNO3 to cover the sample. The acid should completely cover the sample. Cover the beaker with a watch glass.

7.2.1.3 Place beaker on the hot-plate, contained in a fume hood, and boil gently for 30 min. Do not let the sample evaporate to dryness. Caution: Nitric acid fumes are toxic.

7.2.1.4 Remove beaker from hot plate and cool to near room temperature.

7.2.1.5 Quantitatively transfer the sample as follows:

7.2.1.5.1 Rinse watch glass and sides of beaker with D.I. water.

7.2.1.5.2 Decant extract and rinsings into a 100-ml volumetric flask.

7.2.1.5.3 Add D.I. water to 40 ml mark on beaker, cover with watch glass, and set aside for a minimum of 30 minutes. This is a critical step and cannot be omitted since it allows the HNO3 trapped in the filter to diffuse into the rinse water.

7.2.1.5.4 Decant the water from the filter into the volumetric flask.

7.2.1.5.5 Rinse filter and beaker twice with D.I. water and add rinsings to volumetric flask until total volume is 80 to 85 ml.

7.2.1.5.6 Stopper flask and shake vigorously. Set aside for approximately 5 minutes or until foam has dissipated.

7.2.1.5.7 Bring solution to volume with D.I. water. Mix thoroughly.

7.2.1.5.8 Allow solution to settle for one hour before proceeding with analysis.

7.2.1.5.9 If sample is to be stored for subsequent analysis, transfer to a linear polyethylene bottle.

7.2.2 Ultrasonic extraction procedure.

7.2.2.1 Cut a 3/4&inch;×8&inch; strip from the exposed filter as described in section 7.2.1.1.

7.2.2.2 Fold the strip in half twice and place in a 30 ml beaker. Add 15 ml of the HNO3/HCl solution in section 6.2.6. The acid should completely cover the sample. Cover the beaker with parafilm.

The parafilm should be placed over the beaker such that none of the parafilm is in contact with water in the ultrasonic bath. Otherwise, rinsing of the parafilm (section 7.2.2.4.1) may contaminate the sample.

7.2.2.3 Place the beaker in the ultrasonication bath and operate for 30 minutes.

7.2.2.4 Quantitatively transfer the sample as follows:

7.2.2.4.1 Rinse parafilm and sides of beaker with D.I. water.

7.2.2.4.2 Decant extract and rinsings into a 100 ml volumetric flask.

7.2.2.4.3 Add 20 ml D.I. water to cover the filter strip, cover with parafilm, and set aside for a minimum of 30 minutes. This is a critical step and cannot be omitted. The sample is then processed as in sections 7.2.1.5.4 through 7.2.1.5.9.

Note: Samples prepared by the hot extraction procedure are now in 0.45 M HNO3. Samples prepared by the ultrasonication procedure are in 0.40 M HNO3+X M HCl.

8. Analysis.

8.1 Set the wavelength of the monochromator at 283.3 or 217.0 nm. Set or align other instrumental operating conditions as recommended by the manufacturer.

8.2 The sample can be analyzed directly from the volumetric flask, or an appropriate amount of sample decanted into a sample analysis tube. In either case, care should be taken not to disturb the settled solids.

8.3 Aspirate samples, calibration standards and blanks (section 9.2) into the flame and record the equilibrium absorbance.

8.4 Determine the lead concentration in µg Pb/ml, from the calibration curve, section 9.3.

8.5 Samples that exceed the linear calibration range should be diluted with acid of the same concentration as the calibration standards and reanalyzed.

9. Calibration.

9.1 Working standard, 20 µg Pb/ml. Prepared by diluting 2.0 ml of the master standard (section 6.3.1 if the hot acid extraction was used or section 6.3.2 if the ultrasonic extraction procedure was used) to 100 ml with acid of the same concentration as used in preparing the master standard.

9.2 Calibration standards. Prepare daily by diluting the working standard, with the same acid matrix, as indicated below. Other lead concentrations may be used.



------------------------------------------------------------------------
Concentration
Volume of 20 µg/ml working standard, ml Final µg Pb/
volume, ml ml
------------------------------------------------------------------------
0............................................ 100 0
1.0.......................................... 200 0.1
2.0.......................................... 200 0.2
2.0.......................................... 100 0.4
4.0.......................................... 100 0.8
8.0.......................................... 100 1.6
15.0......................................... 100 3.0
30.0......................................... 100 6.0
50.0......................................... 100 10.0
100.0........................................ 100 20.0
------------------------------------------------------------------------


9.3 Preparation of calibration curve. Since the working range of analysis will vary depending on which lead line is used and the type of instrument, no one set of instructions for preparation of a calibration curve can be given. Select standards (plus the reagent blank), in the same acid concentration as the samples, to cover the linear absorption range indicated by the instrument manufacturer. Measure the absorbance of the blank and standards as in section 8.0. Repeat until good agreement is obtained between replicates. Plot absorbance (y-axis) versus concentration in µg Pb/ml (x-axis). Draw (or compute) a straight line through the linear portion of the curve. Do not force the calibration curve through zero. Other calibration procedures may be used.

To determine stability of the calibration curve, remeasure—alternately—one of the following calibration standards for every 10th sample analyzed: Concentration =1 µg Pb/ml; concentration =10 µg Pb/ml. If either standard deviates by more than 5 percent from the value predicted by the calibration curve, recalibrate and repeat the previous 10 analyses.

10. Calculation.

10.1 Measured air volume. Calculate the measured air volume at Standard Temperature and Pressure as described in Reference 10.

10.2 Lead concentration. Calculate lead concentration in the air sample.


where:

C = Concentration, µg Pb/sm 3 .

µg Pb/ml = Lead concentration determined from section 8.

100 ml/strip = Total sample volume.

12 strips = Total useable filter area, 8&inch;×9&inch;. Exposed area of one strip, 3/4&inch;×7&inch;.

Filter = Total area of one strip, 3/4&inch;×8&inch;.

Fb = Lead concentration of blank filter, µg, from section 6.1.1.2.3.

VSTP = Air volume from section 10.2.

11. Quality control.

3/4&inch;×8&inch; glass fiber filter strips containing 80 to 2000 µg Pb/strip (as lead salts) and blank strips with zero Pb content should be used to determine if the method—as being used—has any bias. Quality control charts should be established to monitor differences between measured and true values. The frequency of such checks will depend on the local quality control program.

To minimize the possibility of generating unreliable data, the user should follow practices established for assuring the quality of air pollution data, (13) and take part in EPA's semiannual audit program for lead analyses.

12. Trouble shooting.

1. During extraction of lead by the hot extraction procedure, it is important to keep the sample covered so that corrosion products—formed on fume hood surfaces which may contain lead—are not deposited in the extract.

2. The sample acid concentration should minimize corrosion of the nebulizer. However, different nebulizers may require lower acid concentrations. Lower concentrations can be used provided samples and standards have the same acid concentration.

3. Ashing of particulate samples has been found, by EPA and contractor laboratories, to be unnecessary in lead analyses by atomic absorption. Therefore, this step was omitted from the method.

4. Filtration of extracted samples, to remove particulate matter, was specifically excluded from sample preparation, because some analysts have observed losses of lead due to filtration.

5. If suspended solids should clog the nebulizer during analysis of samples, centrifuge the sample to remove the solids.

13. Authority.

(Secs. 109 and 301(a), Clean Air Act, as amended (42 U.S.C. 7409, 7601(a)))

14. References.

1. Scott, D. R. et al. “Atomic Absorption and Optical Emission Analysis of NASN Atmospheric Particulate Samples for Lead.” Envir. Sci. and Tech., 10, 877–880 (1976).

2. Skogerboe, R. K. et al. “Monitoring for Lead in the Environment.” pp. 57–66, Department of Chemistry, Colorado State University, Fort Collins, CO 80523. Submitted to National Science Foundation for publications, 1976.

3. Zdrojewski, A. et al. “The Accurate Measurement of Lead in Airborne Particulates.” Inter. J. Environ. Anal. Chem., 2, 63–77 (1972).

4. Slavin, W., “Atomic Absorption Spectroscopy.” Published by Interscience Company, New York, NY (1968).

5. Kirkbright, G. F., and Sargent, M., “Atomic Absorption and Fluorescence Spectroscopy.” Published by Academic Press, New York, NY 1974.

6. Burnham, C. D. et al., “Determination of Lead in Airborne Particulates in Chicago and Cook County, IL, by Atomic Absorption Spectroscopy.” Envir. Sci. and Tech., 3, 472–475 (1969).

7. “Proposed Recommended Practices for Atomic Absorption Spectrometry.” ASTM Book of Standards, part 30, pp. 1596–1608 (July 1973).

8. Koirttyohann, S. R. and Wen, J. W., “Critical Study of the APCD-MIBK Extraction System for Atomic Absorption.” Anal. Chem., 45, 1986–1989 (1973).

9. Collaborative Study of Reference Method for the Determination of Suspended Particulates in the Atmosphere (High Volume Method). Obtainable from National Technical Information Service, Department of Commerce, Port Royal Road, Springfield, VA 22151, as PB–205–891.

10. [Reserved]

11. Dubois, L., et al., “The Metal Content of Urban Air.” JAPCA, 16, 77–78 (1966).

12. EPA Report No. 600/4–77–034, June 1977, “Los Angeles Catalyst Study Symposium.” Page 223.

13. Quality Assurance Handbook for Air Pollution Measurement System. Volume 1—Principles. EPA–600/9–76–005, March 1976.

14. Thompson, R. J. et al., “Analysis of Selected Elements in Atmospheric Particulate Matter by Atomic Absorption.” Atomic Absorption Newsletter, 9, No. 3, May-June 1970.

15. To be published. EPA, QAB, EMSL, RTP, N.C. 27711

16. Quality Assurance Handbook for Air Pollution Measurement Systems. Volume II—Ambient Air Specific Methods. EPA–600/4–77/027a, May 1977.


(Secs. 109, 301(a) of the Clean Air Act, as amended (42 U.S.C. 7409, 7601(a)); secs. 110, 301(a) and 319 of the Clean Air Act (42 U.S.C. 7410, 7601(a), 7619))

[43 FR 46258, Oct. 5, 1978; 44 FR 37915, June 29, 1979, as amended at 46 FR 44163, Sept. 3, 1981; 52 FR 24664, July 1, 1987]

Appendix H to Part 50—Interpretation of the 1-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone
top
1. General

This appendix explains how to determine when the expected number of days per calendar year with maximum hourly average concentrations above 0.12 ppm (235 µg/m 3 ) is equal to or less than 1. An expanded discussion of these procedures and associated examples are contained in the “Guideline for Interpretation of Ozone Air Quality Standards.” For purposes of clarity in the following discussion, it is convenient to use the term “exceedance” to describe a daily maximum hourly average ozone measurement that is greater than the level of the standard. Therefore, the phrase “expected number of days with maximum hourly average ozone concentrations above the level of the standard” may be simply stated as the “expected number of exceedances.”

The basic principle in making this determination is relatively straightforward. Most of the complications that arise in determining the expected number of annual exceedances relate to accounting for incomplete sampling. In general, the average number of exceedances per calendar year must be less than or equal to 1. In its simplest form, the number of exceedances at a monitoring site would be recorded for each calendar year and then averaged over the past 3 calendar years to determine if this average is less than or equal to 1.

2. Interpretation of Expected Exceedances

The ozone standard states that the expected number of exceedances per year must be less than or equal to 1. The statistical term “expected number” is basically an arithmetic average. The following example explains what it would mean for an area to be in compliance with this type of standard. Suppose a monitoring station records a valid daily maximum hourly average ozone value for every day of the year during the past 3 years. At the end of each year, the number of days with maximum hourly concentrations above 0.12 ppm is determined and this number is averaged with the results of previous years. As long as this average remains “less than or equal to 1,” the area is in compliance.

3. Estimating the Number of Exceedances for a Year

In general, a valid daily maximum hourly average value may not be available for each day of the year, and it will be necessary to account for these missing values when estimating the number of exceedances for a particular calendar year. The purpose of these computations is to determine if the expected number of exceedances per year is less than or equal to 1. Thus, if a site has two or more observed exceedances each year, the standard is not met and it is not necessary to use the procedures of this section to account for incomplete sampling.

The term “missing value” is used here in the general sense to describe all days that do not have an associated ozone measurement. In some cases, a measurement might actually have been missed but in other cases no measurement may have been scheduled for that day. A daily maximum ozone value is defined to be the highest hourly ozone value recorded for the day. This daily maximum value is considered to be valid if 75 percent of the hours from 9:01 a.m. to 9:00 p.m. (LST) were measured or if the highest hour is greater than the level of the standard.

In some areas, the seasonal pattern of ozone is so pronounced that entire months need not be sampled because it is extremely unlikely that the standard would be exceeded. Any such waiver of the ozone monitoring requirement would be handled under provisions of 40 CFR, part 58. Some allowance should also be made for days for which valid daily maximum hourly values were not obtained but which would quite likely have been below the standard. Such an allowance introduces a complication in that it becomes necessary to define under what conditions a missing value may be assumed to have been less than the level of the standard. The following criterion may be used for ozone:

A missing daily maximum ozone value may be assumed to be less than the level of the standard if the valid daily maxima on both the preceding day and the following day do not exceed 75 percent of the level of the standard.

Let z denote the number of missing daily maximum values that may be assumed to be less than the standard. Then the following formula shall be used to estimate the expected number of exceedances for the year:


(*Indicates multiplication.)

where:

e = the estimated number of exceedances for the year,

N = the number of required monitoring days in the year,

n = the number of valid daily maxima,

v = the number of daily values above the level of the standard, and

z = the number of days assumed to be less than the standard level.

This estimated number of exceedances shall be rounded to one decimal place (fractional parts equal to 0.05 round up).

It should be noted that N will be the total number of days in the year unless the appropriate Regional Administrator has granted a waiver under the provisions of 40 CFR part 58.

The above equation may be interpreted intuitively in the following manner. The estimated number of exceedances is equal to the observed number of exceedances (v) plus an increment that accounts for incomplete sampling. There were (N-n) missing values for the year but a certain number of these, namely z, were assumed to be less than the standard. Therefore, (N-n-z) missing values are considered to include possible exceedances. The fraction of measured values that are above the level of the standard is v/n. It is assumed that this same fraction applies to the (N-n-z) missing values and that (v/n)*(N-n-z) of these values would also have exceeded the level of the standard.

[44 FR 8220, Feb. 8, 1979, as amended at 62 FR 38895, July 18, 1997]

Appendix I to Part 50—Interpretation of the 8-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone
top
1. General.

This appendix explains the data handling conventions and computations necessary for determining whether the national 8-hour primary and secondary ambient air quality standards for ozone specified in §50.10 are met at an ambient ozone air quality monitoring site. Ozone is measured in the ambient air by a reference method based on appendix D of this part. Data reporting, data handling, and computation procedures to be used in making comparisons between reported ozone concentrations and the level of the ozone standard are specified in the following sections. Whether to exclude, retain, or make adjustments to the data affected by stratospheric ozone intrusion or other natural events is subject to the approval of the appropriate Regional Administrator.

2. Primary and Secondary Ambient Air Quality Standards for Ozone.

2.1 Data Reporting and Handling Conventions.

2.1.1 Computing 8-hour averages. Hourly average concentrations shall be reported in parts per million (ppm) to the third decimal place, with additional digits to the right being truncated. Running 8-hour averages shall be computed from the hourly ozone concentration data for each hour of the year and the result shall be stored in the first, or start, hour of the 8-hour period. An 8-hour average shall be considered valid if at least 75% of the hourly averages for the 8-hour period are available. In the event that only 6 (or 7) hourly averages are available, the 8-hour average shall be computed on the basis of the hours available using 6 (or 7) as the divisor. (8-hour periods with three or more missing hours shall not be ignored if, after substituting one-half the minimum detectable limit for the missing hourly concentrations, the 8-hour average concentration is greater than the level of the standard.) The computed 8-hour average ozone concentrations shall be reported to three decimal places (the insignificant digits to the right of the third decimal place are truncated, consistent with the data handling procedures for the reported data.)

2.1.2 Daily maximum 8-hour average concentrations. (a) There are 24 possible running 8-hour average ozone concentrations for each calendar day during the ozone monitoring season. (Ozone monitoring seasons vary by geographic location as designated in part 58, appendix D to this chapter.) The daily maximum 8-hour concentration for a given calendar day is the highest of the 24 possible 8-hour average concentrations computed for that day. This process is repeated, yielding a daily maximum 8-hour average ozone concentration for each calendar day with ambient ozone monitoring data. Because the 8-hour averages are recorded in the start hour, the daily maximum 8-hour concentrations from two consecutive days may have some hourly concentrations in common. Generally, overlapping daily maximum 8-hour averages are not likely, except in those non-urban monitoring locations with less pronounced diurnal variation in hourly concentrations.

(b) An ozone monitoring day shall be counted as a valid day if valid 8-hour averages are available for at least 75% of possible hours in the day (i.e., at least 18 of the 24 averages). In the event that less than 75% of the 8-hour averages are available, a day shall also be counted as a valid day if the daily maximum 8-hour average concentration for that day is greater than the level of the ambient standard.

2.2 Primary and Secondary Standard-related Summary Statistic. The standard-related summary statistic is the annual fourth-highest daily maximum 8-hour ozone concentration, expressed in parts per million, averaged over three years. The 3-year average shall be computed using the three most recent, consecutive calendar years of monitoring data meeting the data completeness requirements described in this appendix. The computed 3-year average of the annual fourth-highest daily maximum 8-hour average ozone concentrations shall be expressed to three decimal places (the remaining digits to the right are truncated.)

2.3 Comparisons with the Primary and Secondary Ozone Standards. (a) The primary and secondary ozone ambient air quality standards are met at an ambient air quality monitoring site when the 3-year average of the annual fourth-highest daily maximum 8-hour average ozone concentration is less than or equal to 0.08 ppm. The number of significant figures in the level of the standard dictates the rounding convention for comparing the computed 3-year average annual fourth-highest daily maximum 8-hour average ozone concentration with the level of the standard. The third decimal place of the computed value is rounded, with values equal to or greater than 5 rounding up. Thus, a computed 3-year average ozone concentration of 0.085 ppm is the smallest value that is greater than 0.08 ppm.

(b) This comparison shall be based on three consecutive, complete calendar years of air quality monitoring data. This requirement is met for the three year period at a monitoring site if daily maximum 8-hour average concentrations are available for at least 90%, on average, of the days during the designated ozone monitoring season, with a minimum data completeness in any one year of at least 75% of the designated sampling days. When computing whether the minimum data completeness requirements have been met, meteorological or ambient data may be sufficient to demonstrate that meteorological conditions on missing days were not conducive to concentrations above the level of the standard. Missing days assumed less than the level of the standard are countedfor the purpose of meeting the data completeness requirement, subject to the approval of the appropriate Regional Administrator. (continued)