Loading (50 kb)...'
(continued)
(c) Process piping shall be designed to collect the regulated material displaced from tank trucks or railcars during loading and to route the collected regulated material vapors to a process or a fuel gas system as provided in §65.83(a)(4), or to a vapor balance system as provided in §65.83(a)(3).
(d) Each closed vent system shall meet the applicable requirements of §65.143.
(e) If the collected regulated material vapors are routed to a process or a fuel gas system as provided in §65.83(a)(4), then each owner or operator shall meet the applicable requirements of §65.142(c).
§ 65.83 Performance requirements.
top
(a) The owner or operator of the transfer rack shall comply with paragraph (a)(1), (2), (3), or (4) of this section.
(1) 98 Percent or 20 parts per million by volume standard. Use a control device to reduce emissions of regulated material by 98 weight-percent or to an exit concentration of 20 parts per million by volume, whichever is less stringent. For combustion devices, the emission reduction or concentration shall be calculated on a dry basis, corrected to 3 percent oxygen. The owner or operator shall meet the applicable requirements of §65.142(c). Compliance may be achieved by using any combination of control devices.
(2) Flare. Reduce emissions of regulated material using a flare meeting the applicable requirements of §65.142(c).
(3) Vapor balancing. Reduce emissions of regulated material using a vapor balancing system designed and operated to collect regulated material vapors displaced from tank trucks or railcars during loading; and to route the collected regulated material vapors to the storage vessel from which the liquid being loaded originated, or to another storage vessel connected to a common header, or to compress and route collected regulated material vapors to a process. Transfer racks for which the owner or operator is using a vapor balancing system are exempt from the closed vent system design requirements of §65.82(b) and (d), the halogenated vent stream control requirements of paragraph (b) of this section, the control device operation requirements of §65.84(b), the monitoring requirements of §65.86, and the requirements of subpart G of this part.
(4) Route to a process or fuel gas system. Route emissions of regulated material to a process or fuel gas system. The owner or operator shall meet the applicable requirements of §65.142(c) and is exempt from the closed vent system design requirements of paragraphs §65.82(b) and (d), the halogenated vent stream control requirements of paragraph (b) of this section, the control device operation requirements of §65.84(b), and the monitoring requirements of §65.86. If the emissions are routed to a process, the regulated material in the emissions shall predominantly meet one of, or a combination of, the ends specified in the following:
(i) Recycled and/or consumed in the same manner as a material that fulfills the same function in that process;
(ii) Transformed by chemical reaction into materials that are not regulated materials;
(iii) Incorporated into a product; and/or
(iv) Recovered.
(b) Additional control requirements for halogenated vent streams. Halogenated vent streams from transfer racks that are combusted shall be controlled according to paragraph (b)(1) or (2) of this section. The owner or operator shall either designate the transfer rack vent stream as a halogenated vent stream or shall determine whether the vent stream is halogenated using the procedures specified in §65.85(c). If determined, the halogen concentration in the vent stream shall be recorded and reported in the Initial Compliance Status Report as specified in §65.160(d). If the owner or operator designates the vent stream as a halogenated vent stream, then this shall also be recorded and reported in the Initial Compliance Status Report.
(1) Halogen reduction device following combustion. If a combustion device is used to comply with paragraph (a)(1) of this section for a halogenated vent stream, then the vent stream exiting the combustion device shall be ducted to a halogen reduction device including, but not limited to, a scrubber before it is discharged to the atmosphere, and the halogen reduction device shall meet the requirements of paragraph (b)(1)(i) or (ii) of this section, as applicable. The halogenated vent stream shall not be combusted using a flare.
(i) Except as provided in paragraph (b)(1)(ii) of this section, the halogen reduction device shall reduce overall emissions of hydrogen halides and halogens by 99 percent or shall reduce the outlet mass emission rate of total hydrogen halides and halogens to 0.45 kilogram per hour (0.99 pound per hour) or less, whichever is less stringent. The owner or operator shall meet the applicable requirements of §65.142(c).
(ii) If a scrubber or other halogen reduction device was installed prior to December 31, 1992, the halogen reduction device shall reduce overall emissions of hydrogen halides and halogens by 95 percent or shall reduce the outlet mass of total hydrogen halides and halogens to less than 0.45 kilogram per hour (0.99 pound per hour), whichever is less stringent. The owner or operator shall meet the applicable requirements of §65.142(c).
(2) Halogen reduction device prior to combustion. A halogen reduction device, such as a scrubber, or other technique may be used to make the vent stream nonhalogenated by reducing the vent stream halogen atom mass emission rate to less than 0.45 kilogram per hour (0.99 pound per hour) prior to any combustion control device used to comply with the requirements of paragraph (a)(1) or (2) of this section. The mass emission rate of halogen atoms contained in organic compounds prior to the combustor shall be determined according to the procedures in §65.85(c). The owner or operator shall maintain the record specified in §65.160(d) and submit the report specified in §65.165(d).
§ 65.84 Operating requirements.
top
(a) Closed vent systems or process piping. An owner or operator of a transfer rack shall operate it in such a manner that emissions are routed through the equipment specified in either paragraph (a)(1) or (2) of this section.
(1) A closed vent system which routes the regulated material vapors to a control device as provided in §65.83(a)(1) and (2).
(2) Process piping which routes the regulated material vapors to a process or a fuel gas system as provided in §65.83(a)(4) or to a vapor balance system as provided in §65.83(a)(3).
(b) Control device operation. Whenever regulated material emissions are vented to a control device used to comply with the provisions of this subpart, such control device shall be operating.
(c) Tank trucks and railcars. The owner or operator shall load regulated material only into tank trucks and railcars that meet one of the following two requirements and shall maintain the records specified in §65.87:
(1) Have a current certification in accordance with the U.S. Department of Transportation (DOT) pressure test requirements of 49 CFR part 180 for tank trucks and 49 CFR 173.31 for railcars; or
(2) Have been demonstrated to be vapor-tight within the preceding 12 months as determined by the procedures in §65.85(a). Vapor-tight means that the pressure in a truck or railcar tank will not drop more than 750 pascals (0.11 pound per square inch) within 5 minutes after it is pressurized to a minimum of 4,500 pascals (0.65 pound per square inch).
(d) Pressure relief device. The owner or operator of a transfer rack subject to the provisions of this subpart shall ensure that no pressure relief device in the loading equipment of each tank truck or railcar shall begin to open to the atmosphere during loading. Pressure relief devices needed for safety purposes are not subject to paragraph (d) of this section.
(e) Compatible system. The owner or operator of a transfer rack subject to the provisions of this subpart shall load regulated material only to tank trucks or railcars equipped with a vapor collection system that is compatible with the transfer rack's closed vent system or process piping.
(f) Loading while systems connected. The owner or operator of a transfer rack subject to this subpart shall load regulated material only to tank trucks or railcars whose collection systems are connected to the transfer rack's closed vent systems or process piping.
§ 65.85 Procedures.
top
(a) Vapor tightness. For the purposes of demonstrating vapor tightness to determine compliance with §65.84(c)(2), the following procedures and equipment shall be used:
(1) The pressure test procedures specified in Method 27 of appendix A of 40 CFR part 60; and
(2) A pressure measurement device that has a precision of ±2.5 millimeters of mercury (0.10 inch) or better and that is capable of measuring above the pressure at which the tank truck or railcar is to be tested for vapor tightness.
(b) Engineering assessment. Engineering assessment to determine if a vent stream is halogenated or flow rate of a gas stream includes, but is not limited to, the following examples:
(1) Previous test results, provided the tests are representative of current operating practices at the process unit.
(2) Bench-scale or pilot-scale test data representative of the process under representative operating conditions.
(3) Maximum flow rate or halogen emission rate specified or implied within a permit limit applicable to the process vent.
(4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties.
(5) All data, assumptions, and procedures used in the engineering assessment shall be documented.
(c) Halogenated vent stream determination. In order to determine whether a vent stream is halogenated, the mass emission rate of halogen atoms contained in organic compounds shall be calculated as specified in paragraphs (c)(1) and (2) of this section.
(1) The vent stream concentration of each organic compound containing halogen atoms (parts per million by volume by compound) shall be determined based on any of the following procedures:
(i) Process knowledge that no halogen or hydrogen halides are present in the vent stream; or
(ii) Applicable engineering assessment as specified in paragraph (b) of this section; or
(iii) Concentration of organic compounds containing halogens measured by Method 18 of appendix A of 40 CFR part 60; or
(iv) Any other method or data that have been validated according to the applicable procedures in Method 301 of appendix A of 40 CFR part 63.
(2) Equation 85–1 of this section shall be used to calculate the mass emission rate of halogen atoms:
Where:
E = Mass of halogen atoms, dry basis, kilograms per hour.
K2 = Constant, 2.494 × 10-6 (parts per million)-1 (kilogram-mole per standard cubic meter) (minute/hour), where standard temperature is 20 °C.
Vs = Flow rate of gas stream, dry standard cubic meters per minute, determined according to Method 2, 2A, 2C, or 2D of appendix A of 40 CFR part 60, as appropriate, or determined using engineering assessment as specified in paragraph (b) of this section.
n = Number of halogenated compounds j in the gas stream.
j = Halogenated compound j in the gas stream.
m = Number of different halogens i in each compound j of the gas stream.
i = Halogen atom i in compound j of the gas stream.
Cj = Concentration of halogenated compound j in the gas stream, dry basis, parts per million by volume.
Lji = Number of atoms of halogen i in compound j of the gas stream.
Mji = Molecular weight of halogen atom i in compound j of the gas stream, kilogram per kilogram-mole.
§ 65.86 Monitoring.
top
The owner or operator of a transfer rack equipped with a closed vent system and control device pursuant to §65.83(a)(1) or (2) shall monitor the closed vent system and control device as required under the applicable paragraphs specified in §65.142(c).
§ 65.87 Recordkeeping provisions.
top
The owner or operator of a transfer rack shall record that either the verification of U.S. Department of Transportation (DOT) tank certification or Method 27 of appendix A of 40 CFR part 60 testing required in §65.84(c) has been performed. Various methods for the record of verification can be used, such as a check off on a log sheet, a list of DOT serial numbers or Method 27 data, or a position description for gate security showing that the security guard will not allow any trucks on-site that do not have the appropriate documentation.
§§ 65.88-65.99 [Reserved]
top
Subpart F—Equipment Leaks
top
§ 65.100 Applicability.
top
(a) Equipment subject to this subpart. The provisions of this subpart and subpart A of this part apply to equipment that contains or contacts regulated material. Compliance with this subpart instead of the referencing subpart does not alter the applicability of the referencing subpart. This subpart applies only to the equipment to which the referencing subpart applies. This part does not extend applicability to equipment that is not regulated by the referencing subpart.
(b) Equipment in vacuum service. Equipment in vacuum service is excluded from the requirements of this subpart.
(c) Equipment in service less than 300 hours per calendar year. Equipment intended to be in regulated material service less than 300 hours per calendar year is excluded from the requirements of §§65.106 through 65.115 and §65.117 if it is identified as required in §65.103(b)(6).
(d) Lines and equipment not containing process fluids. Lines and equipment not containing process fluids are not subject to the provisions of this subpart. Utilities and other nonprocess lines, such as heating and cooling systems that do not combine their materials with those in the processes they serve, are not considered to be part of a process unit.
§ 65.101 Definitions.
top
All terms used in this subpart shall have the meaning given them in the Act and in subpart A of this part. If a term is defined in both subpart A of this part and in other subparts that reference the use of this subpart, the term shall have the meaning given in subpart A of this part for purposes of this subpart.
§ 65.102 Alternative means of emission limitation.
top
(a) Performance standard exemption. The provisions of paragraph (b) of this section do not apply to the performance standards of §65.111(b) for pressure relief devices or §65.112(f) for compressors operating under the alternative compressor standard.
(b) Requests by owners or operators. An owner or operator may request a determination of alternative means of emission limitation to the requirements of §§65.106 through 65.115 as provided in paragraph (d) of this section. If the Administrator makes a determination that a means of emission limitation is a permissible alternative, the owner or operator shall either comply with the alternative or comply with the requirements of §§65.106 through 65.115.
(c) Requests by manufacturers of equipment. (1) Manufacturers of equipment used to control equipment leaks of a regulated material may apply to the Administrator for approval of an alternative means of emission limitation that achieves a reduction in emissions of the regulated material equivalent to the reduction achieved by the equipment, design, and operational requirements of this subpart.
(2) The Administrator will grant permission according to the provisions of paragraph (d) of this section.
(d) Permission to use an alternative means of emission limitation. Permission to use an alternative means of emission limitation shall be governed by the procedures in paragraph (d)(1) through (4) of this section.
(1) Where the standard is an equipment, design, or operational requirement, the following requirements apply:
(i) Each owner or operator applying for permission to use an alternative means of emission limitation shall be responsible for collecting and verifying emission performance test data for an alternative means of emission limitation.
(ii) The Administrator will compare test data for the means of emission limitation to test data for the equipment, design, and operational requirements.
(iii) The Administrator may condition the permission on requirements that may be necessary to ensure operation and maintenance to achieve at least the same emission reduction as the equipment, design, and operational requirements of this subpart.
(2) Where the standard is a work practice, the following requirements apply:
(i) Each owner or operator applying for permission to use an alternative means of emission limitation shall be responsible for collecting and verifying test data for the alternative.
(ii) The owner or operator shall demonstrate the emission reduction achieved by the required work practice and the proposed alternative means of emission limitation.
(iii) The Administrator will compare the demonstrated emission reduction for the alternative means of emission limitation to the demonstrated emission reduction for the required work practices and will consider the commitment in paragraph (d)(2)(iv) of this section.
(iv) The Administrator may condition the permission on requirements that may be necessary to ensure operation and maintenance to achieve the same or greater emission reduction as the required work practices of this subpart.
(3) An owner or operator may offer a unique approach to demonstrate the alternative means of emission limitation.
(4) If in the judgment of the Administrator an alternative means of emission limitation will be approved, the Administrator will publish a notice of the determination in the Federal Register using the procedures pursuant to §65.8(a).
§ 65.103 Equipment identification.
top
(a) General equipment identification. Equipment subject to this subpart shall be identified. Identification of the equipment does not require physical tagging of the equipment. For example, the equipment may be identified on a plant site plan, in log entries, by designation of process unit boundaries, by some form of weatherproof identification, or by other appropriate methods.
(b) Additional equipment identification. In addition to the general identification required by paragraph (a) of this section, equipment subject to any of the provisions in §§65.106 through 65.115 shall be specifically identified as required in paragraphs (b)(1) through (6) of this section, as applicable. Paragraph (b) of this section does not apply to an owner or operator of a batch product-process who elects to pressure test the batch product-process equipment train pursuant to §65.117.
(1) Connectors. Except for inaccessible, ceramic, or ceramic-lined connectors meeting the provisions of §65.108(e)(2), and instrumentation systems identified pursuant to paragraph (b)(5) of this section, identify the connectors subject to the requirements of this subpart. Connectors subject to §65.108(e)(3) shall be distinguished from other connectors. Connectors need not be individually identified if all connectors in a designated area or length of pipe subject to the provisions of this subpart are identified as a group, and the number of connectors subject is indicated. With respect to connectors, the identification shall be complete no later than the completion of the initial survey required by §65.108(a).
(2) [Reserved]
(3) Routed to a process or fuel gas system or equipped with a closed vent system and control device. Identify the equipment that the owner or operator elects to route to a process or fuel gas system or equip with a closed vent system and control device under the provisions of §65.107(e)(3) (pumps in light liquid service), §65.109(e)(3) (agitators), §65.111(d) (pressure relief devices in gas/vapor service), §65.112(e) (compressors), or §65.118 (alternative means of emission limitation for enclosed-vented process units).
(4) Pressure relief devices. Identify the pressure relief devices equipped with rupture disks under the provisions of §65.111(e).
(5) Instrumentation systems. Identify instrumentation systems subject to the provisions of this subpart. Individual components in an instrumentation system need not be identified.
(6) Equipment in service less than 300 hours per calendar year. Identify either by list, location (area or group), or other method, equipment in regulated material service less than 300 hours per calendar year within a process unit subject to the provisions of this subpart.
(c) Special equipment designations: Equipment that is unsafe or difficult-to-monitor—(1) Designation and criteria for unsafe-to-monitor. Valves meeting the provisions of §65.106(e)(1), pumps meeting the provisions of §65.107(e)(6), connectors meeting the provisions of §65.108(e)(1), and agitators meeting the provisions of §65.109(e)(7) may be designated unsafe-to-monitor if the owner or operator determines that monitoring personnel would be exposed to an immediate danger as a consequence of complying with the monitoring requirements of this subpart.
(2) Designation and criteria for difficult-to-monitor. Valves meeting the provisions of §65.106(e)(2) may be designated difficult-to-monitor if the provisions of paragraph (c)(2)(i) of this section apply. Agitators meeting the provisions of §65.109(e)(5) may be designated difficult-to-monitor if the provisions of paragraph (c)(2)(ii) of this section apply.
(i) Valves. The owner or operator of the valve: (A) Determines that the valve cannot be monitored without elevating the monitoring personnel more than 2 meters (7 feet) above a support surface, or it is not accessible in a safe manner when it is in regulated material service, and the process unit within which the valve is located is a regulated source for which the owner or operator commenced construction, reconstruction, or modification prior to the compliance date of the referencing subpart; or
(B) Designates less than 3 percent of the total number of valves within the process unit as difficult-to-monitor.
(ii) Agitators. The owner or operator determines that the agitator cannot be monitored without elevating the monitoring personnel more than 2 meters (7 feet) above a support surface, or it is not accessible in a safe manner when it is in regulated material service.
(3) Identification of unsafe or difficult-to-monitor equipment. The owner or operator shall record the identity of equipment designated as unsafe-to-monitor according to the provisions of paragraph (c)(1) of this section and the planned schedule for monitoring this equipment. The owner or operator shall record the identity of equipment designated as difficult-to-monitor according to the provisions of paragraph (c)(2) of this section, the planned schedule for monitoring this equipment, and an explanation why the equipment is difficult-to-monitor.
(4) Written plan requirements. (i) The owner or operator of equipment designated as unsafe-to-monitor according to the provisions of paragraph (c)(1) of this section shall have a written plan that requires monitoring of the equipment as frequently as practical during safe-to-monitor times, but not more frequently than the periodic monitoring schedule otherwise applicable, and repair of the equipment according to the procedures in §65.105 if a leak is detected.
(ii) The owner or operator of equipment designated as difficult-to-monitor according to the provisions of paragraph (c)(2) of this section shall have a written plan that requires monitoring of the equipment at least once per calendar year and repair of the equipment according to the procedures in §65.105 if a leak is detected.
(d) Special equipment designations: Equipment that is unsafe to repair.—(1) Designation and criteria. Connectors subject to the provisions of §65.105(e) may be designated unsafe to repair if the owner or operator determines that repair personnel would be exposed to an immediate danger as a consequence of complying with the repair requirements of this subpart, and if the connector will be repaired before the end of the next process unit shutdown as specified in §63.105(e).
(2) Identification of equipment. The identity of connectors designated as unsafe to repair and an explanation why the connector is unsafe to repair shall be recorded.
(e) Special equipment designations: Compressors operating with an instrument reading of less than 500 parts per million. Identify the compressors that the owner or operator elects to designate as operating with an instrument reading of less than 500 parts per million under the provisions of §65.112(f).
(f) Special equipment designations: Equipment in heavy liquid service. The owner or operator of equipment in heavy liquid service shall comply with the requirements of either paragraph (f)(1) or (2) of this section as provided in paragraph (f)(3) of this section.
(1) Retain information, data, and analyses used to determine that a piece of equipment is in heavy liquid service.
(2) When requested by the Administrator, demonstrate that the piece of equipment or process is in heavy liquid service.
(3) A determination or demonstration that a piece of equipment or process is in heavy liquid service shall include an analysis or demonstration that the process fluids do not meet the definition of “in light liquid service.” Examples of information that could document this include, but are not limited to, records of chemicals purchased for the process, analyses of process stream composition, engineering calculations, or process knowledge.
§ 65.104 Instrument and sensory monitoring for leaks.
top
(a) Monitoring for leaks. The owner or operator of a regulated source subject to this subpart shall monitor regulated equipment as specified in paragraph (a)(1) of this section for instrument monitoring and paragraph (a)(2) of this section for sensory monitoring.
(1) Instrument monitoring for leaks. (i) Valves in gas/vapor service and in light liquid service shall be monitored pursuant to §65.106(b).
(ii) Pumps in light liquid service shall be monitored pursuant to §65.107(b).
(iii) Connectors in gas/vapor service and in light liquid service shall be monitored pursuant to §65.108(b).
(iv) Agitators in gas/vapor service and in light liquid service shall be monitored pursuant to §65.109(b).
(v) Pressure relief devices in gas/vapor service shall be monitored pursuant to §65.111(b) and (c).
(vi) Compressors designated to operate with an instrument reading less than 500 parts per million as described in §65.103(e) shall be monitored pursuant to §65.112(f).
(2) Sensory monitoring for leaks. (i) Pumps in light liquid service shall be observed pursuant to §65.107(b)(4) and (e)(1)(v).
(ii) Agitators in gas/vapor service and in light liquid service shall be observed pursuant to §65.109(b)(3) or (e)(1)(v).
(b) Instrument monitoring methods. Instrument monitoring as required under this subpart shall comply with the requirements specified in paragraphs (b)(1) through (6) of this section.
(1) Monitoring method. Monitoring shall comply with Method 21 of appendix A of 40 CFR part 60, except as otherwise provided in this section.
(2) Detection instrument performance criteria. (i) Except as provided for in paragraph (b)(2)(ii) of this section, the detection instrument shall meet the performance criteria of Method 21 of appendix A of 40 CFR part 60, except the instrument response factor criteria in section 3.1.2(a) of Method 21 shall be for the representative composition of the process fluid not each individual organic compound in the stream. For process streams that contain nitrogen, air, water, or other inerts that are not organic hazardous air pollutants or volatile organic compounds, the response factor shall be determined on an inert-free basis. The response factor may be determined at any concentration for which monitoring for leaks will be conducted. Maintain the record specified by §65.119(b)(8).
(ii) If no instrument is available at the plant site that will meet the performance criteria specified in paragraph (b)(2)(i) of this section, the instrument readings may be adjusted by multiplying by the representative response factor of the process fluid calculated on an inert-free basis as described in paragraph (b)(2)(i) of this section.
(3) Detection instrument calibration procedure. The detection instrument shall be calibrated before use on each day of its use by the procedures specified in Method 21 of appendix A of 40 CFR part 60.
(4) Detection instrument calibration gas. Calibration gases shall be zero air (less than 10 parts per million of hydrocarbon in air) and the gases specified in paragraph (b)(4)(i) of this section except as provided in paragraph (b)(4)(ii) of this section.
(i) Mixtures of methane in air at a concentration no more than 2,000 parts per million greater than the leak definition concentration of the equipment monitored. If the monitoring instrument's design allows for multiple calibration scales, then the lower scale shall be calibrated with a calibration gas that is no higher than 2,000 parts per million above the concentration specified as a leak, and the highest scale shall be calibrated with a calibration gas that is approximately equal to 10,000 parts per million. If only one scale on an instrument will be used during monitoring, the owner or operator need not calibrate the scales that will not be used during that day's monitoring.
(ii) A calibration gas other than methane in air may be used if the instrument does not respond to methane or if the instrument does not meet the performance criteria specified in paragraph (b)(2)(i) of this section. In such cases, the calibration gas may be a mixture of one or more of the compounds to be measured in air.
(5) Monitoring performance. Monitoring shall be performed when the equipment is in regulated material service or is in use with any other detectable material.
(6) Monitoring data. Monitoring data obtained prior to the regulated source becoming subject to the referencing subpart that do not meet the criteria specified in paragraphs (b)(1) through (5) of this section may still be used to qualify initially for less frequent monitoring under the provisions in §65.106(a)(2), (b)(3), or (b)(4) for valves or §65.108(b)(3) for connectors, provided the departures from the criteria or from the specified monitoring frequency of §65.106(b)(3) or (4) are minor and do not significantly affect the quality of the data. Examples of minor departures are monitoring at a slightly different frequency (such as every 6 weeks instead of monthly or quarterly), following the performance criteria of section 3.1.2(a) of Method 21 of appendix A of 40 CFR part 60 instead of paragraph (b)(2) of this section, or monitoring using a different leak definition if the data would indicate the presence or absence of a leak at the concentration specified in this subpart. Failure to use a calibrated instrument is not considered a minor departure.
(c) Instrument monitoring readings and background adjustments. The owner or operator may elect to adjust or not to adjust the instrument readings for background. If an owner or operator elects not to adjust instrument readings for background, the owner or operator shall monitor the equipment according to the procedures specified in paragraphs (b)(1) through (5) of this section. In such cases, all instrument readings shall be compared directly to the applicable leak definition for the monitored equipment to determine whether there is a leak or to determine compliance with §65.111(b) (pressure relief devices) or §65.112(f) (alternative compressor standard). If an owner or operator elects to adjust instrument readings for background, the owner or operator shall monitor the equipment according to the following procedures:
(1) The requirements of paragraphs (b)(1) through (5) of this section shall apply.
(2) The background level shall be determined using the procedures in Method 21 of appendix A of 40 CFR part 60.
(3) The instrument probe shall be traversed around all potential leak interfaces as close to the interface as possible as described in Method 21 of appendix A of 40 CFR part 60.
(4) The arithmetic difference between the maximum concentration indicated by the instrument and the background level shall be compared to the applicable leak definition for the monitored equipment to determine whether there is a leak or to determine compliance with §65.111(b) (pressure relief devices) or §65.112(f) (alternative compressor standard).
(d) Sensory monitoring methods. Sensory monitoring consists of visual, audible, olfactory, or any other detection method used to determine a potential leak to the atmosphere.
(e) Leaking equipment identification and records. (1) When each leak is detected, a weatherproof and readily visible identification shall be attached to the leaking equipment.
(2) When each leak is detected, the information specified in paragraphs (e)(2)(i) and (ii) of this section shall be recorded and kept pursuant to §65.4(a), except the information for valves complying with the 2-year monitoring period allowed under §65.106(b)(3)(v), and connectors complying with the 8-year monitoring period allowed under §65.108(b)(3)(iii) shall be kept 5 years beyond the date of the last use of the information to set a monitoring period.
(i) The instrument, the equipment identification, and the instrument operator's name, initials, or identification number if a leak is detected or confirmed by instrument monitoring.
(ii) The date the leak was detected.
§ 65.105 Leak repair.
top
(a) Leak repair schedule. The owner or operator shall repair each leak detected as soon as practical but not later than 15 calendar days after it is detected except as provided in paragraph (d) or (e) of this section. A first attempt at repair as defined in subpart A of this part shall be made no later than 5 calendar days after the leak is detected. First attempt at repair for pumps includes, but is not limited to, tightening the packing gland nuts and/or ensuring that the seal flush is operating at design pressure and temperature. First attempt at repair for valves includes, but is not limited to, tightening the bonnet bolts, and/or replacing the bonnet bolts, and/or tightening the packing gland nuts, and/or injecting lubricant into the lubricated packing.
(b) [Reserved]
(c) Leak identification removal—(1) Valves and connectors. The leak identification on a valve in gas/vapor or light liquid service may be removed after it has been monitored as specified in §65.106(d)(2) and no leak has been detected during that monitoring. The leak identification on a connector in gas/vapor or light liquid service may be removed after it has been monitored as specified in §65.108(b)(3)(iv) and no leak has been detected during that monitoring.
(2) Other equipment. The identification that has been placed pursuant to §65.104(e)(1) on equipment determined to have a leak, except for a valve or for a connector that is subject to the provisions of §65.108(b)(3)(iv), may be removed after it is repaired.
(d) Delay of repair. Delay of repair is allowed for any of the conditions specified in paragraphs (d)(1) through (5) of this section. The owner or operator shall maintain a record of the facts that explain any delay of repairs and, where appropriate, why repair within 15 days was technically infeasible without a process unit shutdown.
(1) Delay of repair of equipment for which leaks have been detected is allowed if repair within 15 days after a leak is detected is technically infeasible without a process unit shutdown. Repair of this equipment shall occur as soon as practical, but no later than the end of the next process unit shutdown, except as provided in paragraph (d)(5) of this section.
(2) Delay of repair of equipment for which leaks have been detected is allowed for equipment that is isolated from the process and that does not remain in regulated material service.
(3) Delay of repair for valves, connectors, and agitators is also allowed if the following provisions are met:
(i) The owner or operator determines that emissions of purged material resulting from immediate repair would be greater than the fugitive emissions likely to result from delay of repair; and
(ii) When repair procedures are effected, the purged material is collected and routed to a process or fuel gas system or is collected and destroyed or recovered in a control device complying with §65.115.
(4) Delay of repair for pumps is also allowed if the provisions of paragraphs (d)(4)(i) and (ii) of this section are met.
(i) Repair requires replacing the existing seal design with a new system that the owner or operator has determined under the provisions of §65.116(d) will provide better performance or one of the following specifications are met:
(A) A dual mechanical seal system that meets the requirements of §65.107(e)(1) will be installed;
(B) A pump that meets the requirements of §65.107(e)(2) will be installed; or
(C) A system that routes emissions to a process or a fuel gas system or a closed vent system and control device that meets the requirements of §65.107(e)(3) will be installed.
(ii) Repair is completed as soon as practical but not later than 6 months after the leak was detected.
(5) Delay of repair beyond a process unit shutdown will be allowed for a valve if valve assembly replacement is necessary during the process unit shutdown, and valve assembly supplies have been depleted, and valve assembly supplies had been sufficiently stocked before the supplies were depleted. Delay of repair beyond the second process unit shutdown will not be allowed unless the third process unit shutdown occurs sooner than 6 months after the first process unit shutdown.
(e) Unsafe-to-repair: Connectors. Any connector that is designated as described in §65.103(d) as an unsafe-to-repair connector is exempt from the requirements of §65.108(d) and paragraph (a) of this section if the provisions of §65.103(d) are met.
(f) Leak repair records. For each leak detected, the information specified in paragraphs (f)(1) through (5) of this section shall be recorded and kept pursuant to §65.4(a).
(1) The date of first attempt to repair the leak.
(2) The date of successful repair of the leak.
(3) Maximum instrument reading measured by Method 21 of appendix A of 40 CFR part 60 at the time the leak is successfully repaired or determined to be nonrepairable.
(4) “Repair delayed” and the reason for the delay if a leak is not repaired within 15 calendar days after discovery of the leak as specified in the paragraphs (f)(4)(i) and (ii) of this section.
(i) The owner or operator may develop a written procedure that identifies the conditions that justify a delay of repair. The written procedures may be included as part of the startup/shutdown/malfunction plan required by §65.6 for the source or may be part of a separate document that is maintained at the plant site. In such cases, reasons for delay of repair may be documented by citing the relevant sections of the written procedure.
(ii) If delay of repair was caused by depletion of stocked parts, there must be documentation that the spare parts were sufficiently stocked onsite before depletion and the reason for depletion.
(5) Dates of process unit shutdowns that occur while the equipment is unrepaired.
§ 65.106 Standards: Valves in gas/vapor service and in light liquid service.
top
(a) Compliance schedule. (1) The owner or operator shall comply with this section no later than the implementation date specified in §65.1(f).
(2) The use of monitoring data generated before the regulated source became subject to the referencing subpart to qualify initially for less frequent monitoring is governed by the provisions of §65.104(b)(6).
(b) Leak detection. Unless otherwise specified in §65.102(b) or paragraph (e) of this section, the owner or operator shall monitor all valves at the intervals specified in paragraphs (b)(3) and/or (b)(4) of this section and shall comply with all other provisions of this section.
(1) Monitoring method. The valves shall be monitored to detect leaks by the method specified in §65.104(b) and (c).
(2) Instrument reading that defines a leak. The instrument reading that defines a leak is 500 parts per million or greater.
(3) Monitoring frequency. The owner or operator shall monitor valves for leaks at the intervals specified in paragraphs (b)(3)(i) through (v) of this section and shall keep the record specified in paragraph (b)(3)(vi) of this section.
(i) If at least the greater of two valves or 2 percent of the valves in a process unit leak, as calculated according to paragraph (c) of this section, the owner or operator shall monitor each valve once per month.
(ii) At process units with less than the greater of two leaking valves or 2 percent leaking valves, the owner or operator shall monitor each valve once each quarter except as provided in paragraphs (b)(3)(iii) through (v) of this section. Monitoring data generated before the regulated source became subject to the referencing subpart and meeting the criteria of either §65.104(b)(1) through (5) or §65.104(b)(6) may be used to qualify initially for less frequent monitoring under paragraphs (b)(3)(iii) through (v) of this section.
(iii) At process units with less than 1 percent leaking valves, the owner or operator may elect to monitor each valve once every 2 quarters.
(iv) At process units with less than 0.5 percent leaking valves, the owner or operator may elect to monitor each valve once every 4 quarters.
(v) At process units with less than 0.25 percent leaking valves, the owner or operator may elect to monitor each valve once every 2 years.
(vi) The owner or operator shall keep a record of the monitoring schedule for each process unit.
(4) Valve subgrouping. For a process unit or a group of process units to which this subpart applies, an owner or operator may choose to subdivide the valves in the applicable process unit or group of process units and apply the provisions of paragraph (b)(3) of this section to each subgroup. If the owner or operator elects to subdivide the valves in the applicable process unit or group of process units, then the provisions of paragraphs (b)(4)(i) through (viii) of this section apply.
(i) The overall performance of total valves in the applicable process unit or group of process units to be subdivided shall be less than 2 percent leaking valves, as detected according to paragraphs (b)(1) and (2) of this section and as calculated according to paragraphs (c)(1)(ii) and (c)(2) of this section.
(ii) The initial assignment or subsequent reassignment of valves to subgroups shall be governed by the following provisions:
(A) The owner or operator shall determine which valves are assigned to each subgroup. Valves with less than 1 year of monitoring data or valves not monitored within the last 12 months must be placed initially into the most frequently monitored subgroup until at least 1 year of monitoring data have been obtained.
(B) Any valve or group of valves can be reassigned from a less frequently monitored subgroup to a more frequently monitored subgroup provided that the valves to be reassigned were monitored during the most recent monitoring period for the less frequently monitored subgroup. The monitoring results must be included with that less frequently monitored subgroup's associated percent leaking valves calculation for that monitoring event.
(C) Any valve or group of valves can be reassigned from a more frequently monitored subgroup to a less frequently monitored subgroup provided that the valves to be reassigned have not leaked for the period of the less frequently monitored subgroup (for example, for the last 12 months, if the valve or group of valves is to be reassigned to a subgroup being monitored annually). Nonrepairable valves may not be reassigned to a less frequently monitored subgroup.
(iii) The owner or operator shall determine every 6 months if the overall performance of total valves in the applicable process unit or group of process units is less than 2 percent leaking valves and so indicate the performance in the next periodic report. If the overall performance of total valves in the applicable process unit or group of process units is 2 percent leaking valves or greater, the owner or operator shall no longer subgroup and shall revert to the program required in paragraphs (b)(1) through (3) of this section for that applicable process unit or group of process units. An owner or operator can again elect to comply with the valve subgrouping procedures of paragraph (b)(4) of this section if future overall performance of total valves in the process unit or group of process units is again less than 2 percent. The overall performance of total valves in the applicable process unit or group of process units shall be calculated as a weighted average of the percent leaking valves of each subgroup according to Equation 106–1 of this section:
Where:
%VLO = Overall performance of total valves in the applicable process unit or group of process units.
%VLi = Percent leaking valves in subgroup i, most recent value calculated according to the procedures in paragraphs (c)(1)(ii) and (c)(2) of this section.
Vi = Number of valves in subgroup i.
n = Number of subgroups.
(iv) The owner or operator shall maintain the following records:
(A) Which valves are assigned to each subgroup;
(B) Monitoring results and calculations made for each subgroup for each monitoring period;
(C) Which valves are reassigned, the last monitoring result prior to reassignment, and when they were reassigned; and
(D) The results of the semiannual overall performance calculation required in paragraph (b)(4)(iii) of this section.
(v) The owner or operator shall notify the Administrator no later than 30 days prior to the beginning of the next monitoring period of the decision to begin or end subgrouping valves. The notification shall identify the participating process units and the number of valves assigned to each subgroup, if applicable. The notification may be included in a periodic report if the periodic report is submitted no later than 30 days prior to the beginning of the next monitoring period.
(vi) The owner or operator shall submit in the periodic reports the following information:
(A) Total number of valves in each subgroup; and
(B) Results of the semiannual overall performance calculation required by paragraph (b)(4)(iii) of this section.
(vii) To determine the monitoring frequency for each subgroup, the calculation procedures of paragraph (c)(2) of this section shall be used.
(viii) Except for the overall performance calculations required by paragraphs (b)(4)(i) and (iii) of this section, each subgroup shall be treated as if it were a separate process unit for the purposes of applying the provisions of this section.
(c) Percent leaking valves calculation—(1) Calculation basis and procedures. (i) The owner or operator shall decide no later than the implementation date of this part or upon revision of an operating permit whether to calculate percent leaking valves on a process unit or group of process units basis. Once the owner or operator has decided, all subsequent percentage calculations shall be made on the same basis, and this shall be the basis used for comparison with the subgrouping criteria specified in paragraph (b)(4)(i) of this section.
(ii) The percent leaking valves for each monitoring period for each process unit or valve subgroup, as provided in paragraph (b)(4) of this section, shall be calculated using Equation 106–2 of this section:
Where:
%VL = Percent leaking valves.
VL = Number of valves found leaking, including those valves found leaking pursuant to paragraphs (d)(2)(iii)(A) and (d)(2)(iii)(B) of this section and excluding nonrepairable valves as provided in paragraph (c)(3) of this section.
VT = The sum of the total number of valves monitored.
(2) Calculation for monitoring frequency. When determining monitoring frequency for each process unit or valve subgroup subject to monthly, quarterly, or semiannual monitoring frequencies, the percent leaking valves shall be the arithmetic average of the percent leaking valves from the last two monitoring periods. When determining monitoring frequency for each process unit or valve subgroup subject to annual or biennial (once every 2 years) monitoring frequencies, the percent leaking valves shall be the arithmetic average of the percent leaking valves from the last three monitoring periods.
(3) Nonrepairable valves. (i) Nonrepairable valves shall be included in the calculation of percent leaking valves the first time the valve is identified as leaking and nonrepairable and as required to comply with paragraph (c)(3)(ii) of this section. Otherwise, a number of nonrepairable valves (identified and included in the percent leaking valves calculation in a previous period) up to a maximum of 1 percent of the total number of valves in regulated material service at a process unit may be excluded from calculation of percent leaking valves for subsequent monitoring periods.
(ii) If the number of nonrepairable valves exceeds 1 percent of the total number of valves in regulated material service at a process unit, the number of nonrepairable valves exceeding 1 percent of the total number of valves in regulated material service shall be included in the calculation of percent leaking valves.
(d) Leak repair. (1) If a leak is determined pursuant to paragraph (b), (e)(1), or (e)(2) of this section, then the leak shall be repaired using the procedures in §65.105, as applicable. (continued)